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ABSTRACT: 
 
Landslides are a widespread phenomenon over the Italian territory and economical losses due to this hazard are impressive (an 
average of 2 billion of euros per year in the last 50 years). In the framework of the WISELAND research project (Integrated 
Airborne and Wireless Sensor Network systems for Landslide Monitoring) funded by the Italian Government, we are testing new 
monitoring devices devoted to control large landslides at different degrees of activity. Integrated monitoring tools with a strong 
innovative character are being explored, in particular ground-based wireless sensor networks combined with airborne laser-scanning 
and hyperspectral surveys.  
A wireless sensor network (WSN) consists of a set of low cost micro-computers capable to measure physical parameters and to 
communicate between them. Such a technique allows landslides remote monitoring, measuring spatially distributed parameters and 
recognizing deformation patterns. Ground-based sensor networks can be effectively integrated with grid-based data measured by the 
use of airborne techniques. The Light Detection and Ranging (Lidar) technology is used primarily to densely map wide areas, even in 
presence of a thick vegetation coverage, to retrieve high resolution Digital Terrain Models (DTMs); DTMs are fundamental in 
monitoring and describing landslide movements. Hyperspectral sensors are capable to measure parameters such as soil moisture 
content, vegetation coverage and surface roughness, that can be correlated with slope movements. 
In the first year of the project we tested and validated these monitoring tools on two large earthflows, which are representative of the 
widespread slope instability in the Northern Apennine: the Silla landslide (Bologna Province, Italy) and the Valoria landslide 
(Modena Province, Italy). Although characterised by different geological settings and evolution stages, both landslides are associated 
to a high degree of risk because of the presence of vulnerable elements and their tendency to periodic and abrupt reactivations. 
Periodic airborne surveys were performed in Valoria site in different periods, in order to monitor the surface displacement of the 
slopes. Multitemporal Lidar DTMs allowed the calculation of a differential surface, therefore highlighting absolute height variations 
and recognizing the main landslide components. Hyperspectral data helped in the landslide characterization; for instance the analysis 
of PCA components are also correlated with results coming from DTM analysis and this has been evidenced to be a proper system to 
identify depletion and accumulation zones.  
A prototype wireless sensor network was installed at Silla landslide in July 2009. The network consists of four nodes (located in the 
upper part of the landslide) configured with static routing table which forward packets (one data every 15 minutes) to a master node 
connected to a laptop. Parallel to this test, a new node hardware platform, more shaped for low power – high range data transmission 
in outdoor conditions has been developed and it is now ready to be deployed in the field. 
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1. INTRODUCTION 

Landslide occurrence is related to a variety of factors such as 
underlying geology, mechanical properties of soil and rocks 
degree of weathering, groundwater conditions, and the presence 
(or absence) of geologic structures such as joints, faults, and 
shear zones (Fell et al., 2000). Because of this complexity, 
landslide monitoring is commonly adopted both in the early 
detection of risk factors and as an effective tool for landslide 
hazard management and analysis (ex. Sassa & Canuti, 2008). 

This paper’s aim is to demonstrate the possibility to successful 
apply high resolution Lidar and hyperspectral airborne remote 
sensing techniques to landslide monitoring in the special case of 
an active, large earthflow characterised by rapid to moderate 
rate of movement (the Valoria landslide, Northern Apennines, 
Italy). In addition we intend to develop and test low-cost 
innovative monitoring system, based on wireless sensor 
network technology, to improve our understanding of a typical 
slow-moving landslide in the same area (the Silla Landslide). 
The activities described in this paper are part of the research 
project WISELAND (Integrated Airborne and Wireless Sensor 



Network systems for Landslide Monitoring) funded by the 
Italian Government (financial years 2007-2009). 
 

2. REMOTE SENSING 

2.1 Laser scanning and Hyperspectral Imagery 

The possibility to directly acquire a high density and accurate 
3D point cloud has made Lidar the preferred technology for 
topographic data collection; high-resolution DSMs and DTMs, 
in forestry areas are some example of the potentiality of this 
methodology (Wehr et al., 1999; Holmgren, 2004; Coren et al., 
2006). 
A typical Lidar system consists of a laser ranging and scanning 
unit, together with a POS (Position and Orientation System), 
which encompasses an integrated Differential Global 
Positioning System (DGPS) and an Inertial Navigation System 
(INS) (Cramer, 1999). The laser ranging unit measures the 
distances from the sensor to the mapped surface, while the 
onboard GPS/INS component provides the position and 
orientation of the platform. Lidar data collection is carried out 
in a strip-wise fashion and the ground coordinates of the laser 
footprints are derived (Baltsavias, 1999). 
The Lidar we used is an Optech ALTM3100; it is a small 
footprint Lidar system that is able to acquire data up to 100 kHz 
frequency. In spite of very dense and precise spatial data, these 
systems are rather poor in spectral sensitivity (Coren et al., 
2006). In order to overcome this problem, a hyperspectral 
dataset has been acquired. The hyperspectral system we used is 
an AISA Eagle system (Hyvärinen, 2003). It is a hyperspectral 
sensor allowing the acquisition of a maximum of 255 bands, 
ranging from visible bands to near-infrared ones. This sensor is 
the most appropriate to precisely detect many different terrain 
features. AISA Eagle is a complete, pushbroom system, 
consisting of a hyperspectral sensor head, a miniature GPS/INS 
sensor, a data acquisition unit in a rugged PC with display unit 
and power supply. 
 
2.2 Data acquisition and processing 

In this study Lidar Optech ALTM 3100 was used in the Valoria 
Landslide (Modena Province, Italy). Lidar datasets have been 
acquired in 2006, 2007 and 2009. The study area was surveyed 
from an altitude of 1500m above ground level (agl), with a 
mean sampling density of about 4 points/m2; the radiometric 
resolution of Lidar data, scan frequency and scan width were 
12bits, 70Hz and ±25° respectively. The last Lidar survey was 
performed on 30th March 2009 with the same sensor and the 
same acquisition parameters.  
All the datasets were processed using PosPac software for the 
trajectory computation. The final point cloud was obtained 
using Optech DashMap software, while TerraScan software 
(produced by Terrasolid Corporation) was used for data 
classification, in order to produce a good ground map of Valoria 
landslide (Axelsson, 1999). Typical vertical component errors 
are lower than 0.10 m while errors in the horizontal component 
are in the order of 0.5 m; this precision is impossible to obtain if 
using classical photogrammetry (Glenn, 2006).  
Hyperspectral data were acquired on 16th June 2009, using the 
AISA Eagle system. The flight was performed at 3000 m of 
altitude (agl), acquiring 255 bands and setting a ground 
resolution of 2 m. The final geocoded hyperspectral dataset was 
obtained using a self-made software called HSP, developed by 
OGS. 
All the remote sensing datasets are in the following projection: 
WGS84 ellipsoid, UTM32 North projection. 
 

2.3 Lidar differential DEMs 

The Valoria landslide is a large, active earthflow which mostly 
involves low-plasticity scaly clays (Manzi et al., 2004; Corsini 
et al., 2006). It has been completely reactivated in 2001, and 
since then it has been intermittently active with displacement 
that in one season could be in the order of hundreds of meters. 
This recent evolution has caused a significant modification of 
slope morphology, with quite distinct depletion and 
accumulation zones.  
In the past some photogrammetric digital elevation models have 
been computed and analysed. For instance, the differential 
analysis of a DEM of 1973 and of a DEM of 2003 resulted in a 
clear enough identification of major depletion and accumulation 
zones occurred after the 2001 reactivation event (Corsini et al 
2007). However, due to an inconstant bias between elevation 
values even in stable zones, it was impossible to compute 
volumes precisely. 
In this study, Lidar data from 2006, 2007 and 2009 have 
allowed a rather precise quantification of depletion in the source 
area and of accumulation along the slope and at the landslide 
toe. Lidar data bracket in time a quite significant acceleration 
event occurred in winter 2008-2009. Therefore, a significant 
picture of slope modification in given by the differential 
analysis of 2007 and 2009 DEMs (Figure 1). More specifically, 
a depletion of about 460.000 m3 has been estimated for the 
landslide’s head zone. At the same time, the landslide toe has 
shown a marked bulging, associated to downslope sliding. This 
has been the result of movements that, on the basis of 
topographic total station monitoring data, have exceeded 200 m 
in some slope sectors. 
 

 
 

Figure 1. Deformation map obtained subtracting two Lidar 
DEMs (differential 2007 - 2009). Top left corner coordinates: 

44° 20’ 09.37’’, 10° 30’ 57.19’’. Bottom right coordinates: 44° 
18’ 16.63’’, 10° 34’ 24.51’’.  

 
2.4 Principal Component Analysis (PCA) 

When dealing with hyperspectral images, with a large number 
of useful bands, a fundamental task is to perform the so-called 
Principal Components Analysis (PCA) (Jolliffe, 2002; Coren et 
al., 2005) to reduce the amount of data to a smaller but 
significant dataset. In fact, in such images it is very likely that 
subsets of spectral bands are highly correlated one to each other. 
If this is the case, you will discover that the accuracy and 
reliability of a final classification image will suffer if you 
include highly correlated variables. As a general principle, PCA 
is a mathematical procedure, often applied in geodesy, 
transforming a number of (possibly) correlated variables into a 



(smaller) number of uncorrelated variables, called “principal 
components”. Referring to hyperspectral image processing, the 
objective of PCA is to reduce the number of bands of the 
dataset but contemporary to retain most of the original 
variability in the hyperspectral data. 
The first principal component accounts for as much of the 
variability in the data as possible, and each succeeding 
component accounts for as much of the remaining variability as 
possible. A PCA is concerned with explaining the variance 
covariance structure of a high dimensional random vector 
through a few linear combinations of the original component 
variables. Considering a p-dimensional random vector: 
 
X = [X1 X2 ... Xp]      (1) 
 
The k principal components of X are the k (univariate) random 
variables.  
Let’s consider Y1,Y2 , ...,Yk, which are defined by the 
following relationship: 
 
Y1 = λ1X = l11X1 + l12X2 +... + l1pXp 
Y2 = λ 2X = l21X1 + l22X2 +... + l2pXp   (2) 
… 
Yk = λ kX = lk1X1 + lk2X2 +... + lkpXp 
 
where the coefficient vectors λ1, λ2 ,..., λk are chosen in order 
to satisfy the following conditions: 
• 1-st principal component: the linear combination λ1X that 
maximizes Var(λ1X) and λ1 = 1; 
• 2-nd principal component: the linear combination λ2X that 
maximizes Var(λ2X) and λ2 = 1; 
• Cov(λ1X, λ2X) = 0; 
• j-th principal component: the linear combination λjX that 
maximizes Var(λ jX) and λj = 1; 
• Cov(λ kX, λ jX) = 0 ; for all k < j. 
This means that the principal components are the linear 
combinations of the original variables which maximize the 
variance of the linear combination and which have zero 
covariance (and hence zero correlation) with the previous 
principal components. 
The numerical computation involving a PCA analysis is quite 
complicated for hyperspectral data, and only some specific 
software can truly accomplish it; ENVI software is one of the 
most extensively used for this purpose. After completing the 
PCA, it produces a new image, totally unlinked to the original 
one from a spectral point of view; each pixel contains the 
radiance information of each band, so it is proportional to the 
original information. In this way, a better discrimination of 
different terrain surfaces properties can be done, due to the 
consequent possibility to remove noisy bands. On the other 
hand, after PCA procedure run, it is not always possible to 
associate specific colours to specific objects in a “one-to-one” 
way. This is due to the fact that an optimum result can mostly 
be reached by subsequently applying a De-correlation Stretch 
(DS) inverse procedure. 
 
2.5 Geomorphometric analysis 

Morphometric analysis of Lidar derived Digital terrain Model 
(DTM) has been performed using MicroDEM software (Guth, 
2008). In this paragraph we focus on some theoretical concepts 
about morphometric parameters and their computation. 
Slope and aspect are calculated in correspondence of every 
DTM grid point; the vector normal to ground is so defined by 
applying the steepest neighbor algorithm (Chapman, 1952). The 
direction cosines of this normal vector are then calculated. A 
3mx3m matrix is computed, containing the sum of cross 

products values. Eigenvalues and eigenvectors are extracted 
from this matrix, normalizing the eigenvectors. Eigenvalues are 
indicated as S1, S2 e S3; usually S1> S2> S3. 
The morphometric terrain analysis is usually performed 
considering these indexes (Guth, 2003): 
1) Flatness: defined as: 
 
 

     (3) 

 
 
Large values indicate flat terrain, low values rugged terrain. It 
correlates strongly and negatively with slope or relief.  
2) Terrain organization: defined as: 
 
 

     (4) 

 
 
Large values indicate a dominant linear fabric to the terrain, low 
values isotropic topography. 
3) Terrain organization: orientation trend of S3. It indicates the 
dominant trend to the terrain fabric; its direction is between 0 
and 180°. It is used in eigenvector analysis of SSO diagrams.  
4) Strength: defined as: 
 
 

     (5) 

 
 
Large values indicate flat terrain, low values rugged terrain. It 
looks very similar to the flatness parameter. It correlates 
strongly and negatively with slope or relief.  
5) Shape: defined as: 
 
 

      (6) 

 
 
Large values indicate a dominant linear fabric to the terrain, low 
values isotropic topography. It correlates moderately with 
terrain organization. 
In this study we principally considered Flatness and Terrain 
organization; the other parameters are supposed to be analyzed 
in future further investigations. 
Flatness and Terrain organization of DTM were calculated by 
applying the formulas previously mentioned; this was done after 
classifying Lidar data and generating the ground class by 
applying the Axelsson algorithm (Axelsson, 1999) embedded in 
Terrascan software. DTM data have been gridded and 
interpolated on a regular 2mx2m grid; this operation is 
necessary because the Fabric Organization algorithm can’t be 
applied on point cloud and needs gridded data. An error have 
certainly been introduced, but it has been considered of no 
importance in this study. 
 
2.6 Data interpretation 

The application of morphometric algorithms appeared as a 
powerful methodology to monitor the Valoria landslide.  



Figure 2 and 3 represent Flatness and Terrain Organization 
respectively. Top left corner coordinates of these images are: 
44° 19’ 30.10’’, 10° 32’ 39.03’’. Bottom right coordinates are: 
44° 18’ 31.29’’, 10° 33’ 35.19’’. In Figure 2 we can observe 
low Flatness values (from 1 to 2) corresponding to zones with 
higher differential displacement (see highlighted zones 1 to 5); 
low Flatness values are associated to rough terrains, and 
roughness appears to be proportional to stress on landslide 
surface. Zones highlighted in this figure correspond to high 
displacement zones in Figure 1. 
In Figure 3 we can observe that Terrain Organization values are, 
instead, quite high in four zones (1 to 4). It’s an interesting 
phenomenon, associated to the presence of a dominant linear 
fabric; topography generates very clear lineaments on landslide 
flux directions. 
Zones highlighted in Figure 3 are not characterized by high 
slope values (see Figure 4); high slope values don’t correspond 
therefore to high Terrain Organization values. It means that in 
Valoria the zones where slope is relatively high are not moving 
very fast. 
 

 
 
Figure 2. Flatness strength map superimposed on Google Earth 

image.  
 

 
 

Figure 3. Organization strength map superimposed on Google 
Earth image.  

 

 
 

Figure 4. Slope map superimposed on Google Earth image. 



 
 

Figure 5. PCA image obtained from hyperspectral data.  
 
Interesting results come from the analysis of the hyperspectral 
image after applying the PCA algorithm (see Figure 5). In the 
four zones previous mentioned (1 to 4), PCA values are very 
low; it means that terrain roughness strongly affects 
hyperspectral bands decorrelation. PCA was performed 
considering 210 bands: 44 bands were not taken into account 
because strongly affected by noise, especially in the Near 
Infrared field. This is a very interesting result and demonstrates 
that hyperspectral images can find a direct application to 
landslides monitoring, even if this is to be improved in further 
studies.  
Also between Figure 2 and 5 we see a correspondence among 
zones 1, 2, 3 and 4. Zones characterized by a Flatness value 
equal to 2 or less than 2 correspond to zones affected by a 
higher bands decorrelation in PCA image (low PCA values). 
The same zones are characterized by a high Terrain 
organization value; it means that the predominant Fabric 
alignment is clearly marked.  
Extending the analysis to Figure 4, we can observe that  zones 
1, 4 and 5 are also affected by a relevant slope; zones 2, 3 and 6 
are instead characterized by a low slope value, even if Flatness 
and Terrain organization are sensibly relevant. Zone 4 is an 
accumulation zone and a high slope value is expected; zone 2 
and 3 are instead depletion zones, so this result needs to be 
further investigated. 
Zone 6 can be differently interpreted depending on the dataset 
analyzed; a correlation between results coming up from all the 
datasets (especially from PCA and DEM analysis) doesn’t seem 
to exist. 
As overall conclusion we can state that morphometric analysis 
performed jointly with the use PCA algorithms seems a 
promising methodology for landslides monitoring. Analysis 
described in this paper open the access to new research fields. 
Especially hyperspectral methods are worthwhile to be applied 
to landslide monitoring. PCA algorithms help identify some key 
structure in landslide dynamic. Further hyperspectral analysis 
may try to refine existing geologic maps and to identify the 
spatial distribution of previously unmapped or unknown faults 

and shear zones through the detection of minerals alteration. 
Although existing spectral-map libraries can be used to identify 
minerals; the spectra of a particular mineral can vary depending 
on the specific host rock; collection of field spectral data will be 
necessary to ground-truth the remotely sensed data. This 
analysis hasn’t been included in this paper because the work is 
still in progress and some field measurements are still to be 
completed; soon we’ll have some preliminary results. 
 

3. WIRELESS SENSOR NETWORK 

Wireless sensor networks (WSN) are potentially very useful to 
monitor hostile natural environments such as landslides 
(Werner-Allen et al., 2006). The theoretical advantages include 
the connectivity to any possible sensor, the reasonable cost of 
components, the set up simplicity and the possibility of an easy 
web integration (Chong, 2003). Pioneer applications on 
landslide areas are encouraging (Sheth et al., 2006) and the 
research project aims to develop and deploy a prototype WSN 
system to collect spatially distributed data relevant for 
landslides (pore water pressure in the landslide body, surface 
displacements, soil moisture conditions). 
In July 2009, a simple sensor network infrastructure was 
deployed in the upper part of the Silla landslide (Bologna 
Province, Italy), a slow-moving earthflow which last reactivated 
in 1994. The network consists of four nodes (Crossbow Micaz 
motes with TinyOS software) that, following a predetermined 
static routing table, forward data packets (one data every 15 
minutes) to a master node connected to a laptop. The main 
effort, however, was devoted to improve the performance of the 
hardware available at the beginning of the WISELAND project 
(early 2007). In particular, new data compression algorithms 
were developed in order to reduce power consumption and to 
enhance the range of data transmission in outdoor conditions. 
Although the WSN works correctly, the main problems related 
to the maximum distance among nodes (less than 50 m) and to 
the battery life (in the order of two months) were not completely 
solved. A new node hardware platform has been then 
developed. Six of the available nodes have been configured as 
“Data” nodes and three as “Bridges”. The main task of data 
nodes is of sampling vibrations (via an on board 2 axis 
accelerometer) from slope movements originated by an active 
landslide; vibrations are sent to bridge nodes which, following a 
predetermined static routing table, have the goal of forwarding 
packets to a laptop, acting as a base station and collecting sensor 
readings. Accelerometers in the active zone sample acceleration 
values at 10 Hz. Bridges are placed at an average distance of 30 
m, giving the network about 90 m of total extent. Every bridge 
is in charge of collecting packets coming from the associated 
accelerometer motes (two motes for bridge) and eventually of 
forwarding packets coming from more peripheral bridges. Close 
to the base station, and out of the active slope zone, we settled 
three more sensors to measure atmospheric pressure, humidity, 
light depth, temperature and acceleration. The latter has the aim 
of providing an external neutral reference for the accelerometers 
in the active zones. The new infrastructure is ready and will be 
deployed in the field in March 2010. 
 

4. CONCLUSIONS 

The study demonstrates the capabilities of remote sensing 
techniques to recognise the essential features of an active, rapid 
earthflow. Using a differential high resolution DTM approach a 
displacement can be easily detect and the zones with major 
displacement identified. Lidar acquisitions in different periods 
need so to be performed and considered. 



Areas subjected to a strong landslide activity have been 
identified by direct DTM analysis. Zones subjected to high 
relative differential displacements are associated low Flatness 
values in the DTM analysis; these indicate rough terrains. The 
same zones are associated a dominant linear fabric; it doesn’t 
seem to be correlated to the local slope obtained by DTM 
analysis. 
Hyperspectral data revealed themselves to be very useful in 
roughness estimate and in vegetation zones detection and 
separation. PCA analysis is a very useful and powerful 
methodology to characterize the surface landslide features 
because of its sensitivity to surface roughness. Future studies 
will focus on terrain classification by supervised algorithms 
applications, in order to better identify the landslide lithology.    
The field deployment of a prototype wireless sensor network 
raised important information regarding the maximum distance 
between nodes and the related power consumption that has to be 
minimized. A new node hardware infrastructure has been then 
developed and it will be installed in March 2010 in the upper 
part of a large, slow-moving earthflow. 
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