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ABSTRACT: 
 
Geoinformatics tools have proved to be of great value in disaster risk management, such as through remote sensing allowing 
accurate and timely acquisition of information on hazard processes, elements at risk or consequences of a hazardous event, which 
can be analysed or integrated with auxiliary information in GIS programmes or models. Landslides are one of those phenomena 
where geoinformatics developments have opened up new ways to monitor potential or ongoing slides, but also to build inventories 
of previous mass movements as the basis for hazard and thus risk assessment. This constitutes a valuable tool for a hazard type that 
led to more than 400 fatal disasters worldwide in 2008 that in total killed over 32,000 people, and often is the only method that 
allows rapid and timely landslide mapping in mountainous areas. 
 In the past such mapping was primarily done by visual analysis of aerial photos or, increasingly, satellite imagery, and a 
number of automatic methods have been developed. However, until recently only pixel-based methods, primarily employing 
different classification or change detection techniques, were developed. Those are beginning to be replaced with approaches based 
on objects or segments. Object-oriented analysis (OOA) is inherently more suitable, as it can address the phenomena studied, 
landslides in this case, as what they are – objects, not pixels – that have spectral, spatial and contextual characteristics. They thus 
allow limitations of pixel-based methods, which are largely restricted to using spectral and texture information, to be overcome. Past 
landslide characterisations have identified a number of different landslide types and defined them, for example in terms of source 
material type, run-out length, failure plane curvature or crown shape. Potentially any of these characteristics can be employed in 
OOA, provided suitable data needed to calculate those parameters are available. 
 In this paper we show how multispectral 5.8 m IRS P6 LISS-IV imagery of parts of the High Himalayas in India, together with 
elevation information extracted from 2.5 m stereo-Cartosat1 data, can be used for automatic mapping and discrimination of debris 
slides and flows, as well as translational or rotational rockslides. The approach developed is able to eliminate false positives that 
have proved difficult in previously reported research, such as clear-cuts, roads or riverbeds, and allows an effective integration of 
process knowledge, for example the spatial relation of landslides with causative factors such as slope or road construction. 
Landslides mapped in an independent watershed of 53 km2, using a process developed for a smaller area, were detected and 
correctly classified with accuracies of 76.4% and 69.1%, respectively, the smallest one measuring less than 800 m2. This suggests 
that object-based automatic methods can well be used to substitute visual interpretation or field mapping, particularly when large 
areas need to be covered. 
 Using OOA efficiently also raises several problems. The actual analysis is reliant on proper image segmentation, the 
subjectivity and trial-and-error nature of which has been the subject of years of research. Hence we also address how image 
information itself, rather than visual fine-tuning, can be used for an objective segmentation. Finally, we also discuss how the OOA 
approach presented here can be extended to include also the mapping of other parameters needed in risk assessment, such as 
elements at risk. 
 

1. INTRODUCTION 

Landslides are one of the most destructive natural hazards, 
causing damage to lives and property in all mountainous areas 
of the world. The actual number of annual landslides is not 
known, in part due to different databases employing different 
minimum size or damage thresholds, but also because 
individual events frequently go unrecorded. The uncertainty is 
true for global inventories as much as for individual mass-slide 
occurrences, such as following earthquakes or tropical storms. 
For example, the 2008 Wenchuan/Sichuan earthquake alone 
triggered thousands of slides, many of which were joined into 
slide clusters, and the actual number has not yet been 

determined. Such incomplete inventories, however, create 
problems, as accurate and comprehensive information on past 
slides is the basis for landslide hazard, and thus risk, 
assessment. With landslides typically compounding the already 
difficult access to slide-prone areas, field-based mapping is not 
practical and often outright impossible, and nature typically 
obliterates traces of all but the largest slides within a few 
months or years. Remote sensing data thus appear ideal for 
rapid synoptic mapping. Aerial photos, with their high spatial 
resolution and tonal richness used to be the main tool for slide 
mapping (e.g. Norman et al., 1975), with the multitude of visual 
assessment clues and stereo viewing supporting a knowledge- 
and experience-driven cognitive landslide detection and type 



 

discrimination approach (Colwell, 1960; Mantovani et al., 
1996). However, the frequent absence of timely post-slide 
imagery, comparatively small spatial coverage and high cost, 
and principal utility for photogrammetry and visual assessment 
undermine their value for rapid post-slide mapping, especially 
in multi-slide situations covering large areas. Aerial photos 
have been gradually replaced by satellite data, first used for 
slides large enough to be detectable with medium resolution 
sensors such as Landsat, either directly (Francis and Wells, 
1988) or indirectly (McKean et al., 1991). More recently 
launched satellites, with improvements in spatial resolution, 
pointability and, frequently, stereo capability, have been 
increasing the suitability of spaceborne data. However, it has 
also been shown that traditional automatic image processing 
methods, such as image classification or change detection, have 
limited suitability (for a review see Borghuis et al., 2007). This 
is because typically landslides are interspersed with a range of 
spectrally similar landscape features, such as rock outcrops, 
clear-cuts, roads or riverbeds, which conventional pixel-based 
methods can not distinguish from landslides. While integration 
of different data, including elevation information, has been 
shown to help (McDermid and Franklin, 1994), it generally fails 
to eliminate such false positives (Nichol and Wong, 2005). 
 
1.1 Landslide detection with object-based methods 

The failure of pixel-based methods is not surprising as they do 
not address landslides as what they are – spatial objects 
embedded in a specific environmental context. A number of 
studies have already investigated the potential of object- or 
segmentation-based processing methods. In this alternative 
approach images are broken down into spectrally homogenous 
segments, possibly at different spatial scales, that have a range 
of spatial, spectral, textural and contextual characteristics 
(Baatz and Schäpe, 2000; Dragut and Blaschke, 2006) and that 
serve as the basis to incorporate feature and process knowledge 
into the analysis. As all created objects are part of a horizontal 
and vertical topological structure, i.e. having a spatial 
relationships with neighboring segments in the same 
segmentation level, but also with super- or sub-objects in higher 
or lower levels, respectively, segments adhering to given 
characteristics can be considered in relation to features with 
other accurately describable attributes. Barlow et al. (2003) 
explored the utility of image segmentation for landslide 
mapping, already making use of DEM derivatives and NDVI 
measures, but finding the Landsat ETM+ data used to be 
insufficient for the discrimination of similar features such as 
logging roads. In a follow-up paper (Barlow et al., 2006) the 
authors used higher resolution SPOT data and discriminated 
debris slides, debris flows, and rock slides. Moine et al. (2009) 
also made use of spectral, shape, texture and adjacency rule in 
an OOA-context. 
 
1.2 Objectives 

As in the work by Barlow et al., Moine et al. did not consider 
the failure mechanism, which is critical to distinguish major 
landslide types. A principal objective of this work is to extend 
the classic landslide characterization by Varnes (1978) based on 
types of material and movement, creating a generic landslide 
type characterization based on currently available geodata 
parameters, that also integrate geomorphometric indicators. We 
distinguish the following landslide types: (i) translational rock 
slide, (ii) rotational rock slide, (iii) debris slide, (iv) debris flow, 
and (v) shallow translational rock slide (for detailed type 
descriptions, as well as block diagram illustrations of those 

types, see Martha et al., 2009). We test our approach in a 
landslide-prone area in the High Indian Himalayas, as described 
in the following section. 
 
2. DATA AND METHODOLOGY 

2.1 Study area 

The Himalayas are considered a global landslide hotspot, with 
continuous uplift, seismic activity, and widespread road 
construction leading to frequent slope failures that challenge the 
economic developments of regions typically already 
underdeveloped. We thus argue that comprehensive and 
accurate landslide inventories are a basic requirement for risk 
assessment to support better planning and mitigation measures. 
For our work we considered an 81 km2 area in the state of 
Uttarakhand in India (Figure 1). It comprises the 
Madhyamaheshwar sub-catchment (28 km2), where we 
developed the method, and the Mandakini catchment (53 km2) 
we used for independent validation of the method.  

Figure 1.  Overview map of the study area around the city of 
Okhimath in Northern India, comprising Madhyamaheshwar 

sub-catchment and the Mandakini catchment. 
 
 
2.2 Spatial data used 

A vast image archive of most parts of the world has been built 
up by the Linear Imaging Self-scanning System IV (LISS-IV) 
sensor onboard the Indian Remote Sensing Satellite (IRS) P6, 
also known as Resourcesat-1. With 5.8 m ground resolution and 
wide coverage it is ideally suited for repeat observations of vast 
areas. We used a 3-band scene (G, R, NIR) obtained on 16 
April 2004, which we orthorectified using a 10 m DSM created 
from 2.5 m resolution stereoscopic data from Cartosat-1 
acquired on 6 April 2006. The sensor carries aft- and forward 
looking cameras and data are provided with rational polynomial 
coefficients (RPCs) that allow block triangulation and DSM 
generation with as little as one ground control point (GCP). The 
quality of the derived DSMs, also relative quality when no 
GCPs are used and in difficult mountainous terrain, has 
previously been shown (Martha et al., in press). This is of 
critical importance as not only timely optical imagery is needed 
for landslide detection; in an approach based on morphometry, 
including curvature, also accurate post-event DSMs are needed, 
and both ideally without requiring field data. 
 



 

2.3 Image segmentation and OOA procedure 

Multiresolution segmentation, a process controlled by scale, 
shape, colour, compactness and smoothness parameters (Baatz 
and Schäpe, 2000), was performed using the LISS-IV data. 
Segmentation with a small scale factor (10) was chosen in this 
case as most of landslides are of small size. A three step OOA 
procedure was developed to detect and classify landslides. In 
the first step, using a normalised vegetation difference index 
(NDVI) threshold value, vegetated areas were separated from 
non-vegetated area. In the second step, landslide false positives 
(river sand, barren land, shadow, built-up area, and roads) were 
eliminated sequentially using generic DEM-derived parameters. 
For example, road was separated from landslide using 
orthogonal relationship between the main axis of road and 
general flow direction derived from the DEM. Similarly, a 
drainage network automatically derived from the DEM was 
used to classify the objects as water bodies that could not be 
identified unambiguously using low reflectance values in the 
NIR band (Figure 2). In the third step, all detected landslides 
were classified based on the type of material and movement 
Varnes (1978).  

Figure 2. High order drainage (order 5 in this case) was used to 
classify objects as water body. 

 
3. RESULTS  

3.1 Extraction of landslide candidates 

Fresh rock and soil are exposed after the occurrence of a 
landslide. This characteristic of a landslide is best quantified 
from remote sensing data by NDVI, which is very sensitive to 
low level of vegetation change. Therefore, landslide candidates 
are extracted by applying an NDVI threshold value of 0.18. 
 
3.2 Landslide recognition and identification  

Since NDVI was used as a cut-off criterion, all objects with 
lower NDVI values were considered as landslide candidates. 
From those all landslide false positives were sequentially 
eliminated using generic first and second order DEM 
derivatives, such as slope, flow direction, terrain curvature and 
hill shade. 

 Recognised landslides were classified based on its material 
and type of movement. Adjacency to barren rock and 
agricultural land was used to classify a landslide as rock slide 
and debris slide, respectively. For classification based on failure 
mechanism, the remaining landslide objects were resegmented 
using terrain curvature, based on their straight slope and 
concavity nature, and were classified into translational and 
rotational landslides, respectively. Using this method, a total of 
five types of landslide was detected (Figure 3). 
 
3.3 Accuracy assessment 

Accuracy assessment was carried out by comparing those 
against a manually prepared landslide inventory map. 
Stereoscopic visual interpretation of satellite data was carried 
out to prepare a landslide inventory map. This area was 
previously mapped by Naithani (2002) and Rawat and Rawat 
(1998) for the preparation of landslide inventory map, which 
was consulted during stereoscopic interpretation. 
 76.4% of the landslides were correctly detected and 
69.1% corrected classified using the method developed. In 
terms of areal extent, 69.9% of the landslide areas were 
correctly recognised and 69.5% correctly classified (Figure 3). 
 

4. SUITABLILITY OF OOA FOR LANDSLIDE RISK 
ASSESSMENT 

The results shown in this paper suggest that OOA is more 
suitable to detect and identify landslides in remote sensing 
imagery than traditional pixel-based methods, hence promises 
to facilitate hazard assessment. A comprehensive mitigation 
plan, however, requires risk information, thus we require a 
comparable understanding of elements at risk (EaR) and their 
vulnerabilities. As those risk components are equally spatio-
temporal in nature, object-based methods may also be suitable. 
Previous work has shown how physical infrastructure 
(buildings, road networks, etc.) can be effectively mapped with 
OOA (e.g. Akcay and Aksoy, 2008; Walker and Blaschke, 
2008). More difficult would be to establish the physical 
vulnerability of individual infrastructure elements, especially 
since damage is highly dependent on the physics of an impact, 
that is kinetic energy and actual infrastructure surface area hit. 
In India landsides affect mostly roads, with 3 possible forms of 
effect: (i) roads get covered with landslide debris that can be 
cleared, (ii) roads suffer some damage in the process, or (iii) 
road sections get completely removed with the sliding flank. As 
roads can be effectively identified with OOA (in this study they 
were explicitly removed as a form of false positives), their 
spatial relationship with respect to slide-affected slopes can be 
established, and thus some knowledge gained on the likely 
damage form a road may suffer. Where buildings are involved a 
minimum likely slide volume can be used, beyond which total 
damage can be expected. For selected areas flanks identified in 
the hazard assessment can also be modelled, and results 
integrated with EaR identified in the OOA. 
 Comprehensive risk analysis should also include social, 
environmental and economic vulnerability, though such studies 
are scarce, especially in the OOA context. Ebert et al. (2009) 
showed how social vulnerability (SV) can be mapped in urban 
areas affected by flooding and slope instability, using 
segmentation-based analysis based on physical proxies. This is 
likely less applicable in dispersed mountain communities that, 
furthermore, are facing a hazard with limited impact range. This 
means that the social standing of a person, or their education 
level or influence in a community, are less relevant than in 
highly differentiated urban setting where hazard exposure  



 

Figure 3. All five types of landslides and their agreement with the reference landslide inventory map. 
 
 
intersects more gradually with SV distribution (Cutter et al., 
2003; Ebert et al., 2009). Environmental and economic 
vulnerability are rarely included in risk studies, largely because 
sound methodologies are lacking and the important secondary 
consequences slides can lead to. For example, the consequences 
of interruptions in economic production, or subsequent loss of 
income of affected people, are poorly understood, as are 
quantifiable potential losses of specific ecosystems that may get  
 

 
 
affected. In the case of landslides, GIS tools are best suited to 
study road networks with respect to location of importance 
centers to assess the specific economic value of roads. Such 
network analysis can then also reveal the cost of traffic having 
to be diverted via alternative roads. Such comprehensive 
landslide risk assessment procedures in remote mountainous 
areas remain to be developed. 
 
 



 

5. CONCLUSIONS AND DISCUSSION 

OOA was used in this study to detect and classify landslides in 
high resolution satellite data and with support of DEM 
information. The parameters considered for analysis in this 
study, such as slope, flow direction, terrain curvature, are of 
generic nature and hence this model, in principle, can be 
employed in any area to map landslides rapidly, thereby 
reducing the time and effort needed for such inventorisation and 
the amount of landslides traces lost, which is paramount for any 
disaster management programme. The accuracy of landslide 
detection and type identification is good and we are 
continuously working on this model to improve it further. 
However, the threshold values considered for the detection and 
classification purpose likely have to be adjusted when the 
model is applied to other areas. 
 Apart from this short term goal, worldwide landslide 
disaster management programmes also have a long term 
objective, i.e. landslide hazard and risk management. OOA has 
also been shown to be useful in the preparation of elements at 
risk maps, which is crucial for landslide risk assessment. Once 
landslide vulnerability for elements of risk is known, it can be 
integrated in GIS to prepare landslide risk map. The algorithm 
developed in this project is available on our website 
(http://www.itc.nl/OOA-group), and we welcome testing of the 
approach with other data types and in other areas. 
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