
VRML For 3D GIS
Siyka Zlatanova1

ITC, Enschede, The Netherland

1zlatanova@itc.nl

Abstract
The three dimensional Geographic Information System
(3D GIS) is an area of intensive investigations. A 3D GIS
should be a system capable of maintaining and analyzing
3D spatial and thematic properties of real geographic
objects. Most of the research efforts concentrate on
stand-alone solutions. However, recent innovative
technologies developed on the World Wide Web allow
client-server alternatives of 3D GIS to be studied.

The paper presents an approach to query, modify and
interact with remote spatial databases, which aiming at
providing functional capabiliti es of a 3D GIS. The
approach is based on dynamically created VRML
documents to portray 3D graphics (spatial data), HTML
documents to formulate SQL queries, CGI scripts to
access the database. The techniques proposed are
examined by a prototype system. Working examples of
spatial queries are described in detail and performance
tests are discussed at the end.

Keywords: client-server, CGI, spatial queries, SQL,
HTML

1 Introduction
The increased complexity of tasks in many applications
seeks for an integration of 3D spatial and thematic data
and mutual relationships. Existing systems either fall
short to deal with 3D geometry (2D GIS) or lack
extended spatial and thematic analysis (CAD). For
example, queries such as “show which buildings have a
common wall ” , ”show which pipe goes through this
building” , “show all the offices, which are on the second
floor” still can not be accomplished by any of the
commercially available systems. In this respect, many
authors consider a 3D GIS, which maintains 3D
topology, spatial and thematic information, the
successful solution (see [11],[15]).

One of the challenges for the 3D GIS development is
remote access across the Internet. The issue has three
central aspects 1) organization of data on the server, 2)
means to formulate queries and 2) visualization of the
resulting information (basically 3D graphics and text) on
the client station.

The Web has already shown a great potential in
improving accessibili ty to spatial information hosted in
different computer systems over the Internet. The
commonly implemented approach is the provision of

Internet access to existing systems (CAD or 2D GIS),
e.g. Intergraph with GeoMedia, Autodesk with
MapGuide, ESRI with ArcView Internet Map Server.
However, the spatial information supplied is 2D (i.e.
raster or vector maps) and the scope of queries is limited
to the ones predefined by the vendor (see also [8]).

Until recently, 3D models were not directly
accessible on the Web. The Virtual Reality Modeling
Language (VRML) was designed to fill the gap. Since
December 1997 when it was approved as a Web
standard, it has gradually gained popularity for
visualization of urban models (see [3],[10],[13],[14]),
geological structures (see [9]), historical or
architecturally significant building constructions (see
[6],[12]), tourist information (see [4]) etc. Most of the
VRML models created so far are pre-designed files
stored on the server. Dynamically created VRML
documents are reported only by Coors et al and Gahedan
(see [7],[9]). The language, however, has the potential to
describe the behavior of objects, provide links to other
documents on the Web, represent interrelations that can
be used to retrieve and visualize 3D spatial information
and thus serve as an interface to 3D GIS..

The approach of a 3D GIS on the Web presented
here, relies on a Database Management System (DBMS).
The data are organized according to a conceptual
schema, which integrates 3D topology, spatial and
thematic data. Practically, the database supplies
information for both 3D spatial analysis and visualization
queries completed with the help of SQL statements. The
access to the database is controlled by CGI scripts.
Dynamically created VRML and HTML documents
provide the Graphic User Interface (GUI) to complete
queries, visualize results and explore 3D models. The
VRML documents contain extended information for A
similar approach with direct access to an integrated
database via a Spatial Data Manager is presented in [2].
However, the space is restricted to 2D and the user
interacts with the map through Java applets.

The paper is organized in the following order: first a
short overview of the VRML syntax is given, second, a
detailed description of the system architecture is
presented, third the most significant requirements for the
conceptual schema are mentioned and finally, several
examples of 3D spatial queries are discussed. The
performance results obtained of two data sets form urban
areas are given to qualify and ill ustrate the approach
presented.

2 VRML and VR browsers
VRML is a high level object-oriented language for the
description of scenes and the behavior of objects.
Initially based on the SGI Open Inventor file format for
exchange of data, the language has passed through
several stages, i.e. VRML 1.0, VRML 2.0 VRML97,
before its endorsement as a Web standard. The syntax of
VRML is based on objects (nodes) with parameters
(fields). A number of nodes are responsible for the design
of the scene: description of geometry (regular and
irregular shapes, grids, text), ill umination of the model
(directional, spot, point and ambient lights), materials
and textures (draping and mapping of JPEG, GIF, PNG
image file formats). Combinations of another nodes, i.e.
sensors, routes and interpolators introduce dynamics.
Sensors detect viewer actions (e.g. mouse move, click,
drag), time changes and viewer positions (visibility,
proximity, colli sion). Routes direct captured events to
interpolators to alter some fields (color, position,
orientation, scale). While appropriate for direct
animations, the mechanism is insuff icient for
descriptions of complex actions, e.g. the control of
sequential clicks with the mouse on an object. In case of
complicated movements and manipulations, the script
node referring to Java applets and JavaScripts, may be
employed. The proto node supplies the user with a tool to
design his/her own sensors and interpolators. Common
Gateway Interface (CGI) scripts embedded in the body of
the VRML document allow establishment of connections
to any application on the server. All the VRML nodes
can be aggregated in various complex hierarchical
composites and altered together. More details about the
syntax of VRML can be found in [5].

The scene designed according to VRML is stored in
an ASCII file. Specific visualization software, i.e. Virtual
Reali ty (VR) browser is necessary to display data on the
screen. The role of VRML document and VR browsers is
different. The VRML document supplies the parameters
for scene design and the dynamics of objects while the
VR browser takes care of scene rendering and the
interface to navigate through and interact with the model.
Initially, the basic function of the VR browser, besides
visualization, was only real time navigation through the
model, i.e. provision of virtual reali ty techniques:
examine, fly-over, walk-trough, pan, zoom. The second
edition of VRML granted the VR browser with new
responsibiliti es, i.e. detection of user interactions with
objects if they were described in the VRML file. Plenty
of freeware and trial versions of VR browsers can be
downloaded from the site of the 3D Web consortium (see
[1]).

The potential of VRML and VR browsers for 3D
modeling is still underestimated. The understanding
about the couple VRML-VR browser is often that it was
a system for visualizing of 3D graphics on the Web
allowing real-time exploration. This impression is
created mostly by CAD and GIS vendors, which offer
export of their models in VRML. The models created are

static 3D worlds lacking dynamics and point-and-click
capabiliti es. In the next sections, it is demonstrated that
VRML and VR browsers can serve the more
sophisticated tasks that are needed for a 3D GIS, i.e.
query of the objects of the model to obtain thematic or
spatial information.

3 The approach
The client-server architecture presented here is based

on the CGI mechanism to access remote data. The main
components of the system are a Web browser with a
VRML plug-in on the client site, a Web server and
DBMS on the server site (see Figure 1). A set of CGI
scripts acts as an intermediate communication unit
between the client and the DBMS.

The entire process of information extraction can be
categorized into several groups, i.e. identification, query,
data modification and exploration.

User identification and database selection. At the
first stage, users are given options to chose a model (e.g.
a town or even a neighborhood might be in a separate
database) and the operations desired (query and
visualization or updating). The database can be selected
inside an initial HTML document (by fill ing out a form
or selecting an area of interest in a 2D map) or a VRML
document (pointing on a 3D map). Among the variety of
approaches to specify the scope of operations, the most
convenient one is the provision of the often used
operations (e.g. query and visualize) for all the users.
Thus any user can freely send queries and receive
responses without restrictions until an attempt to change
data in the database.

Scripts : Java,
Javascript

Web server

VRML browser

HTML browser

Web browsers

database query&modification

DBMS

CGI scripts

local query&manipulation

GIS ClientGIS Server

responcequery ;

 Figure 1: System architecture

Query. The request for information about an object
(e.g. a building, an owner, a parcel, a street) is broken
down into two steps: object identification and
information specification. For example, the simple query
“who is the owner of this building” will require means to
1) point to and select the building and 2) select the
attribute “owner” among all the building characteristics.
The first step can be formulated either in a VRML or an
HTML document. In an HTML document, the object can
be specified by typing its identifier (ID). Most likely, the

user is not always aware of IDs in advance. A more
attractive alternative is the recognition of the object in a
VRML document. The VRML file in this case has to be
created such as a link between the ID in the database and
the object on the screen (i.e. the VRML node in the
VRML document). The user points the object of interest,
observes its ID and composes the query.

The identification of an object activates a CGI script
on the server. The script returns an HTML form, where
the user further specifies the parameters. The CGI script
processes the form parameters, extracts the needed data
from the database and creates a document on the fly,
which is sent back to the client station by the server.
Since the CGI client/server architecture is stateless, each
new query will initiate the same process and the result
will be a completely new document. If the parameters of
the previously completed form are involved in the new
query, they should be memorized on the client station.

The two-step schema described above is appropriate
only to query information (non-spatial and spatial) about
a particular object. Many queries and analyses cannot be
fitted in the schema because it is difficult to clarify the
objects in advance. Examples of such queries are “show
the highest building in the town” , “show all the
administrative buildings” , “show the common walls” ,
“who are the owners of the buildings along this street” .
Section 6 elaborates on several examples of spatial
queries discusses both cases query of individual objects
and complex queries.

Data modification. Since VRML in its current stage
lacks nodes for direct database access, editing of data can
not be organized implementing the standard VRML
syntax. The modification, completed by the user inside
the current VRML document cannot be transferred to the
server either. For example, the operation “drag-with the
mouse” described in a VRML document by a couple of
standard nodes that allow the user to move the object
inside the browser, will effect neither the original VRML
document nor the object in the database. In the here
presented approach, CGI scripts conduct the editing
process. Similarly to the operations described above,
HTML completed forms and VRML documents
participate in input-output process. Example 2, Section 6
explains the sequence of operations. An alternative,
which makes use of Java applets and the Common Object
Request Broker Architecture (CORBA), is presented in
[7]. The approach, however, requires extensions of the
TCP/IP protocol, which are not widely implemented on
the Internet yet.

Exploration and local modification address discovery
and (or) temporary changes in the model on the client
station. The exploration can be interpreted as a local
query of some object properties, which are delivered by
VRML documents, but can be activated and/or observed
only on user request. Many examples of VRML worlds
guiding the user through rooms, towns, scientific models,
computer systems, etc. are available for access on the
Web (see Congress Center, Airport Schipol, Twente
Music Centrum). A combination of appropriate VRML

nodes may facilitate even the decision-making process.
For example, an urban planner may want to compare
several architectural projects for a renovation of building
facades. She/he can operate on the several new views,
e.g. switch them sequentially and observe the effect. The
new views can be organized as different texture, kept in
separate image files on the server (see Section 6,
Example 2). Other typical examples are: design of urban
green areas and evaluation of the tree growth in a certain
period of time. Different types and sizes of tree models
can be prepared and sent to the client in one file. Only
one of all the possible solutions is visible at a time,
therefore, a perception of design is created.

In general, documents can be displayed at the client
screen in a common window subdivided in frames,
several new windows or combinations of them. In the
prototype system, preference is given to a common Web
window (split i nto several frames). Although separate
windows provide the user with more freedom to resize
and adjust observed models, the control over the
windows and information inside is rather complicated.

The data delivered at the client site is displayed either
by an HTML browser (text, 2D graphics, etc.) or a VR
browser (3D graphics and text). For example, the query
“show the way between the hotel and the nearest shop for
shoes ” will result in a subset of objects (streets and
surrounding houses). An appropriate animation can even
route the user from the hotel to the shop. The result, in
this case, can be displayed in one VRML document. A
number of queries, e.g. “show the way between the hotel
and the nearest shop for shoes and the prices there”,
however, may require HTML and VRML documents to
be created simultaneously. Unfortunately, due to
restrictions in the CGI mechanism for dynamic creation
of documents, the delivery of only one document per
session is possible. The first line sent by the server is the
MIME type of the document, which gives an indication
to the browser which plug-in (in this example VR
browser) to activate. This limitation can be compensated
only at the price of a new client-server session. Hence,
the example above will be subdivided into two steps:
first, the VRML document describing the geometry will
be displayed and second, a new user action, e.g. click
with the mouse on the shop will create an HTML
document containing the prices.

4 VRML for visualization and
interaction

As indicated above, the VRML document can be created
either as a simple document for visualization and
navigation only or as a complex, point-and-click and
dynamics enabled document. In the fist case, only the
functionali ty of VR browsers, i.e. fly-over, walk-trough,
examine, pan, zoom can be employed. In terms of GIS,
simple VRML documents are applicable only for end
visualization, i.e. no further information is to be queried .

The second type extends the abili ty to interact with
the model almost unlimitedly. For example, each object
in the current VRML document can be a clickable object
invoking Java applets, CGI or Java scripts.
Consequently, a new query to the database (on the
server) or query of the VRML document arrived (on the
client station) could be the next action. The new query
could result again in a complex VRML document. To
ill ustrate the extended possibiliti es of such approach, an
user who needs accommodation information will be
considered. In the initial VRML document, the first click
on the door of a hotel (Javascript, the same document)
will allow the user to enter. The second click on the
reception desk (CGI script, new HTML document in a
new window) will show prices and available rooms. The
third click on a button of the li ft will open the door
(Interpolators and routes, the same VRML document).
The fourth clicking on a board to move the lift (CGI
script, new HTML document in a new window) will ask
for the number of the floor. The fifth click on the send
button (CGI script, new VRML document) will display
the corridor on the 4th floor, and so forth. In such a way,
network analysis might be realized. In the example, five
clicks of the mouse activate three CGI scripts (three new
documents are dynamically created), one Javascript and a
couple of VRML interpolators.

An interesting issue is dynamic composition of such a
complex VRML document. The first basic operation, i.e.
identification of a certain object, is already problematic.
As was mentioned before, the VR browser is not a
complete GUI, e.g. point-and-click operation is not a
responsibili ty of the browser. The browser reacts on user
actions (other than navigation) only if they are initially
and explicitly described in the VRML document. A
particular sensor has to be attached to a particular object
before the user is able to interact with that object. The
next step is the composition of the response. What does
the user want to achieve selecting this object: text,
graphics, image, spatial analysis, attribute information,
data about the selected object or about other objects? In
this approach, the decision on the type of sensor, the
target object and the resulting event (CGI script or Java
script, or appropriate VRML nodes, or files on remote
servers), has to be taken by the CGI script during the
dynamic creation of the document. Clearly, the set of
CGI scripts becomes a critical element in the system and
could cause problems on the server due to:

• drastic increase of the number of CGI scripts in
case of complex sequential queries, which will
complicate the script management

• sophisticated algorithms, which will require
longer time for the dynamic composition of
VRML documents

• long VRML documents, which will give rise to
negative effects in two directions: occupation of
the server and long waiting time at the client site.

So far, only a user action has been considered as a
possible input event to initiate an action. As was
mentioned at the beginning, VRML is capable of sensing
two other types of events: 1) dynamic interactions among
objects and 2) time related changes. For example, a
colli sion between two moving objects, a collapse of a
building after a certain period of time or due to a contact
with another object (e.g. plane), a crash of a plane if
touches the ground, etc.

Apparently, VRML has the potential to describe
complicated static and dynamic spatial interrelations. The
dynamic creation of such complex VRML documents,
however, is not an easy task.

To avoid or reduce the undesirable effects of CGI
scripting and facilit ate management of dynamic
interactions, the proposed system stores appropriate
supplementary information about behavior of objects in
the database. An object is described by its attributes,
relationships and behavior (see [16]). The behavior in
the geometric domain defines dynamic changes and
interactions related to characteristics of objects such as
shape, position, colour, etc. However, behavior can be
extended to comprise changes and interactions in the
virtual world. Thus, a variety of parameters, scripts,
small VRML files, animations, etc. per object that
facilit ate and simplify the work of CGI script can be
captured in the database. The result is a possibili ty of
CGI scripts standardization, which consequently
decreases their number and reduces their size. Large
worlds (i.e. long VRML files) can be partitioned into
several smaller ones by assigning behavior to specific
objects (doors, windows, etc.). The world can be
reconstructed afterwards on user request as only one
script is sufficient to deliver the entire file. The hotel
example given above will have a separate object “board
in the lift” with a behavior “moves up” . The behavior
can be implemented on a database level as “on-click
activate which-floor CGI script” with two fields event
initiator and event response. The field event response
contains the script, which controls the movement, and
some parameters to identify the floor. The number of
parameters may vary depending on the type of the
interaction. The plane crash on the ground, for example,
will need three parameters: to identify the event (touch),
the conflict object (ground) and the resulting action
(crash, e.g. short animation).

5 Conceptual schema
The database integrates a variety of information in order
to serve a large spectrum of tasks: spatial and thematic
analysis, 3D visualization (some applications may need
realistic), manipulation of objects and introduction and
control of behavior. The exhaustive list of requirements
to the database is quite long, therefore only the most
important ones are mentioned here:

• storage of thematic and spatial information per
object

• storage of physical properties of objects
(material, texture)

• support of spatial analysis (neighborhood,
proximity)

• abili ty to provide data for visualization in
VRML, i.e. faces, orientation of faces and points
bordering the faces.

• storage of parameters describing the behavior of
objects

bid

bid

fidenoseq

bid rtree tidcolor

BODY_A

BODY_D

EI

BODY_B

sid fidenoseq

sid rtree tidcolor

SURF_A

SURF_D

EI ER

SURF_B

sid

lid nidenoseq

lid rtree

LINE_A

LINE_D

EI

LINE_B

lid

widthcolor shape

pid

POINT_DA

EI ER

POINT_B

pid

nid rtree shape sign

nid rtree

NODE

xc yc zcfid

FACE

nidenoseqrtree

rtree

COMOB_A

COMOB_D

EI ER

COMOB_B

coid

coid

coid oidtype

shapecolor tid

TEXT_D

TEXT_A

yttid

tid

xtenoseq

tname

ER ER

bid

BODY_T SURF_T

sid

LINE_T

lid

POINT_T

pid
tema tema tema tema

COMOB_T

coid tema

Figure 2: Relational implementation of the conceptual
schema

Furthermore, the result of the user query is
dynamically created, which asks for response times that
are acceptable to the users. The time interval between
sending the query and displaying the data is a compound
of: 1) the time needed for data traveling between the
server and the client, 2) the time for data parsing at the
client station, 3) the time for database traversing and 3)
the time for document composition. Indeed, one way to
speed up the process and improve the performance is a
careful selection of client-server hardware and software,
in particular DBMS, language for programming and
browser for visualization. An additional way, which is
discussed here, is optimization of the conceptual schema.

The mapping of the conceptual schema onto a
relational data structure is given on Figure 2. Four types
of geometric objects, i.e. point, line, surface and body are
supported. The basic constructive objects are face and
node (not to be confused with nodes in the VRML
syntax).

Each object is represented by four relational tables.
Tables with extension _D contain the information about
shape and position of objects, tables _A keep parameters
about physical properties and tables _B give some
information about eventual behavior of objects. Since the
thematic information is not elaborated, tables _T are
limited to a simple indication of the object class. Each
object has a unique ID. Complex objects are described as
aggregations of body, surface, line or point objects.

Complex objects may have their own behavior. For
example, the building of the hotel can be linked to a
script (activated by input event “mouse over”), which
provides some thematic information. The entrance door,
however, may react independently (activated by “mouse
click”).

A coding of the geometric objects and corresponding
constructive objects based on R-tree grouping is provided
(field rtree in _D, FACE and NODE tables) in order to
speed up traverse of the tables, facil itate the maintenance
of the information and extend the spatial analysis toward
directional analysis. More details about the conceptual
schema and the R-tree can be found in [16].

6 Examples of Queries
Two 3D urban models are created and organized
according to the conceptual schema to il lustrate the
functionali ty of the system. The first 3D model contains
photo-textured buildings, DTM, trees and lampposts of
the central part of Enschede, the Netherlands. The model
is relatively small but all the geometric objects according
to the conceptual schema are represented. The second
model consists only of buildings (presented as BODY
objects) of Vienna, Austria (see Table 1). In contrast to
the first model, the second one is relatively simple but
with a size which can be expected from real models. The
buildings do not have textures assigned. All the examples
presented in the paper can be accessed at
http://barley.itc.nl.

Example1: Query of spatial and thematic
information. The example is a realization of the two-step
query discussed above, i.e. demonstrates an extraction of
information about a particular object. The user has access
to the VRML document with a point-and-click option
and can visually choose an object (e.g. building). A click
with the mouse on the building activates a CGI script,
which delivers the Query-Result sections (see Figure 3)

Query section

Submit button

A click on the building
activates a CGI script

Pull-down menu:
coordinates, texture,
VRML file, interrior

Result section
interior

Figure 3: Query interior of a building

In the Query section, a pull-down menu offers several
choices: coordinates of the building, the image file used

to texture the walls of the building (in this example only
one image file is used for all the four textured walls), a
VRML document, containing only the building of
interest, and the interior of the building. The request has
to be sent to the server by checking the Submit button.
The CGI script creates and sends to the client a new
HTML document in the section Result. Figure 3 shows
the interior of the building as an embedded panoramic
movie (accessible through the SmoothMovie plug-in).
Practically, any standard Web document (movie, sound,
animation) is applicable for visualization of results.

Section for values

Display of old values

VRML with results

Import of new values

Submit button 2

Submit button1

A click on the building
activates a CGI script

Optional changes

Change section

Figure 4: Changing texture coordinates of a building

Example2: Modification of information. The next
example presents the sequence of steps to change
information on the database level. Again, the initial
VRML file has to be equipped with the necessary sensors
to detect user actions. A click on a building activates a
CGI script, which delivers a form with Change-Values
section. The snapshot shown in Figure 4, shows the
interface to change texture coordinates. This refers to a
case when the user wants a replacement of an old façade
with a new one. VRML syntax requires the name of the
new image file and ties points to correctly map the image
onto the corresponding face. Here, only the steps to
adjust the texture coordinates will be explained. The
submission (Submit button 1) of an item selected (i.e.
texture coordinates) activates a search in the database for
old image coordinates and then displays them in the
section Values. The new-typed values (sent by Submit
button 2) are replaced in the corresponding fields in the
database and a VRML document considering the new
coordinates is created for validation. The Web user
visually inspects the texture mapping and corrects the
values if necessary. Usually, several repetitions of the
procedure are suff icient for complete adjustment. In a
similar way, geometry coordinates and names of image
files used for texturing can be replaced (edited) with new
ones.

The second textured building in the Figures 3 and 4 is
an example of a local query as was defined above. A
click on that building changes the façade, i.e. the image
file used for texturing is replaced with a new one. A
combination of sensors, routes and Javascript provides a
“switch-image-on-click” operation. Thus the user may

change an arbitrary number of façade images by
sequential clicking on the building. However, no
connection to the server is made because all the images
are included in the VRML document in advance. The
mechanism reduces the traffic to the server, however, it
has to be used carefully bearing in mind the size of the
VRML file.

The examples above represent operations on one
object and the query and modification are restricted to
the choices given in a pull-down menu. Despite the
obvious limitations, the approach is very appropriate for
a broad audience of Web users. A special knowledge
about the information in the database and the conceptual
schema is not necessary.

Example3: SQL queries. Experienced and qualified
users can be allowed to send SQL statements to the
database and visualize the result of queries in VRML
documents (in case of spatial queries). Several SQL
forms dealing with different situations, i.e. “ free SQL
query” , “SELECT”, “SELECT+visualize ” are designed
and available for testing in the experimental site. The
paper discusses only the “SELECT+ visualize” fil l-out
form (see Figure 5).

The syntax of the VRML requires a structuring of the
geometric data different to the one in the conceptual
schema (will be discussed later). A CGI script can re-
organize the geometric data obtained from a query only if
they are appropriate for a VRML document. For
example, the query “which are the walls of building 1”
can be represented by the following SQL expression (see
also Figure 2):

SELECT fid FROM bodyg, face WHERE bidg=1
and fidg=fid

Required SQL syntax

VRML document

Submit button 1

Vields for SQL
statements

Figure 5: SELECT and visualize in VRML document

The extracted data (ID of faces), however, is useless
for a VRML document. SQL statements have to ensure
sufficient data in a strictly defined order (see section 7).
In the example, the required SQL expression is given in
the HTML fill-out form. An intermediate HTML
document (not visible on Figure 5) guides the users in
his/her decision whether to proceed further with a VRML
document creation. The intermediate step can be avoided

by control over fields in the form and data extracted from
the RDBMS. Such control, however, will restrict the
form to creation only of VRML documents, therefore it
is omitted.

The free access to the database provides a mechanism
to specify and visualize a wide range of spatial queries.
Each request in the spatial domain (formulated by spatial
or non-spatial conditions), which can be described in one
SELECT statement, in practice, can be visualized in a
VRML document. Examples of such queries are: “which
are the buildings higher than 20m”, “show the buildings
in a particular area”, “show all the streets” , “show all the
administrative buildings” , etc.

Example 4: Embedded queries. The last examples
available on the experimental site are related to spatial
queries and analysis, which cannot be expressed by a
singe SQL statement. A solution based on a series of
specialized HTML fil l-out forms and VRML documents
(containing the resulting objects) is implemented, e.g.
forms to clarify neighborhood relationships (i.e.
“common nodes” and “common faces”). The role of the
user in such queries is to indicate the objects and
relationships that are to be analyzed. The CGI scripts
processing such queries assist the RDBMS in the
completion of the query, in contrast to the previous
examples where they are responsible only for the transfer
of parameters and dynamic creation of documents.

7 Performance
All the examples and experiments are completed on a

prototype system with the following characteristics:
server PC Pentium 133MHz, 96MB RAM, LINUX
operation system and Apache Web server; client PC
Pentium 166MHz, 64Mb RAM, Windows’95 operation
system, Netscape 3.0 Web browser and Cosmo player
VR browser. The freeware MySQL client-server
RDBMS is used to host the data. Perl is the programming
language for CGI scripting as the supplementary CGI.pm
and DBI.pm libraries to create fil l-out forms and connect
to RDBMS are utili zed.

A short look in “ the kitchen” of extracting spatial
information will be made before reporting the
performance tests. Spatial queries intended for
visualization pass two compulsory phases. First, the data
needed to complete the user query is collected and,
second the geometry of the objects, which will
participate in the virtual world, is extracted. The two
phases can be written as “ find the data with respect to the
user query” and “ find all the data necessary for the
VRML file”. Indeed, the number of objects included in
the VRML document may vary depending on the manner
preferred to portray the result (the original scene with
highlighted elements or only the objects of interest).
Anyhow, the final world created has to contain at least
the geometry of the objects elected by the query. The
VRML syntax for solid geometry (irregular shapes are
considered) requires 1) coordinates of the vertices
representing the bordering faces of objects, 2) proper

(anti-clockwise) orientation of faces, 3) corresponding
texture files and texture coordinates (if they exist). The
coordinates have to be listed per object, preferably
without duplications. The description of the faces is
given by identifiers, which are the current position of the
coordinates in the VRML document, starting with 0.
Clearly, this structuring differs significantly from the
organization of the geometry in the conceptual schema
(see Figure 2). However, a particular subset of data
extracted in a certain sequence, i.e. fid, enoseq, nid, xc,
yc, zc and order: fid, enoseq can be further re-ordered
according to VRML rules.

Figure 6: 400 buildings from Vienna (545Kb)

The SQL operator may or may not include the two
phases in a single SELECT statement. For example, the
query “visualize the buildings inside a certain area” can
be expressed by one SQL statement in contrast to the
query “check for duplicated points” . The representative
tests are limited to one-line SQL expressions to ensure
equal conditions while comparing CGI scripts and
RDBMS queries. Thus the results reported here are based
on queries, which can be formulated in the following
SELECT statement:

SELECT fid,enoseq,nid,xc,yc,zc FROM <tables>
WHERE <condition> ORDER BY fid,enoseq

For example, the VRML document of the BODY
object with ID 12, will be obtained by the SQL statement
(see also Figure 2):

SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM
bodyg, face, node WHERE bidg=12 and fidg=fid and
nidf=nid ORDER BY fid, enoseq

Table 1 contains the size of the data sets (Vienna and
Enschede) in terms of objects regarding the conceptual
schema.

The experiments aimed at estimating the penalty cost
of 1) data extraction and 2) creation of a VRML
document and transmission to the client station. The first
experiments are pure database SQL queries executed on
the server by the RDBMS. The column BD (Tables 2 and
3) contains the results of time needed by the RDBMS,
while the On the Fly represents the approximate time for
the query, the creation of a VRML document, delivery
and visualization on the client station. Hence, the
difference between the two results is an estimate of the
time needed to transfer the data over the Internet and
display in the VR browser. The last three columns give
an idea about the size of delivered data, number of faces
and the number of records extracted from the database .
The number of records coincides neither with the vertices
(not shown) nor with the faces, which is caused by the
required special order and particular set of data of the
SQL query discussed above.

 Table 1: Content of the experimental data sets
Enschede Vienna

Composite objects 2 -

Body objects 11 1 600

Surface objects 19 -

Line objects 7 -

Point object 8 -

Faces 1533 92 268

Nodes 960 30 756

Textures 7 -

The Enschede data set was considered too small for
performance estimation, therefore R-tree coding and B-
tree indexing of the database were not performed. The
four objects involved in the experiments, i.e. a building, a
surface, a composite object and DTM represented as a
surface object (see Table 2) demonstrated the capabili ty
to extract all four types of geometric objects. The
performance test, however, has proved the importance of
optimization issues. Although, individual objects can be
extracted in a very fast manner, the object DTM requires
rather long time.

Table 2: Enschede data: database query, query on the
fly and size of extracted data
Objects DB

(sec)

On the

fly

(sec)

Faces Number

records

A building 0.2 2 10 48

A surface 0.06 2 1 12

A composite

object

0.2 2 15 72

DTM 30 50 1399 4197

Entire model 40 60 1533 4293

The search in the second data set is optimized for
speed in two ways. First, a spatial restriction of the query
range is introduced by R-tree codes and second, the B-
tree indexing provided by MySQl is exploited. The most

frequent visited fields, i.e. fid, nid in FACE and NODE
tables are indexed. The results of the nine representative
queries are shown in Table 3.

Table 3: Vienna data: database query and size of
extracted data
Number

Buildings

DB:

(sec)

On the

fly

(sec)

Faces Number

records

VRML

doc

(Kb)

1 012 4 13 66 2

2 0:17 4 25 126 5

10 0:30 5 89 414 11

20 0:65 5 223 1 098 28

50 1:70 8 636 3 216 77

200 6:60 45 2 414 12 084 295

400 12:2 80 4 765 23 790 545

600 19:50 140 7 223 36 138 839

1600 52:40 330 18 578 92 268 2 306

As can be seen, the VRML documents smaller than
500Kb can be delivered in 1-2 minutes, which can be
considered an acceptable time for a waiting for a Web
document. Larger files should be delivered only in
exceptional cases. Regarding the complexity of the
VRML document, however, a document with a size
about 500Kb may contain several neighborhoods or only
few textured buildings and DTM (see Figure 6, 7). In this
context, a reasonable balance between type of
information (detailed vs. schematic) and manner to
visualize (textures vs. colors) always has to be pursued.

Figure 7: Several buildings from Enschede (405Kb)

It should be mentioned that not all the options to
optimize the system were explored. The interest was only
on the optimization of the conceptual schema due to
assumption the that different implementation may
produce different results. For example, the RDBMS
(MySQL) performs essentially better results when less

tables are joined. A split of the SELECT SQL statement
into two given as an example above, decreases the time
for database traversal with 10-12%.

SELECT FIDI FROM bodyg WHERE bidg=12
and fidg=fid;

SELECT fid, enoseq, nid, xc, yc, zc FROM face,
node WHERE fid=FIDI and nidf=nid ORDER BY
fid, enoseq

8 Conclusions
An approach for a 3D GIS on the Web has been
presented and discussed. An essential role in this
approach in granted to VRML. Concerning visualization
and exploration, VRML has already shown a capacity to
design highly realistic and dynamic worlds. Here, it has
been demonstrated that VRML in combination with
HTML forms, behaves as GUI to formulate a wide range
of SQL queries. The presented examples of 3D spatial
data queries, modification and validation of the changes
by visual inspection, are few of the 3D GIS operations,
which can be organized on the basis of VRML. The Web
users, who used to have at their disposal only end VRML
documents and expects lit tle or no processing of 3D data
across the Internet, can reverse their attitude.

The dynamic creation of complex VRML documents
enabling further query, providing enhanced visualization
techniques, raises questions for effective solutions. Some
of the issues, i.e. adequate database organization and
performance optimization were addressed here. The
conceptual schema presented maintains 3D GIS
information (3D topology, spatial and thematic data) as
well as the behavior of objects. As was il lustrated the
behavior of objects facilit ates the dynamic creation of
Web documents. Applied techniques for time
optimization (i.e. R-tree coding and B-tree indexing)
speed up the traversal of the database and thus reduce the
waiting time at the client station.

Finally, attention is drawn by the author to the
implemented components: MySQL, Apache, Linux, Perl
and related libraries. All the modules are freeware
software downloaded from the Web. Bearing in mind
their easy installation and maintenance, constantly stable
work during all the experiments and positive results
obtained from performance tests, they are heartily
recommend for both research and real applications.

References
[1] 3D Web Consortium, 1999,

http://www.sdsc.edu/vrml

[2] Abel, D.J, K. Taylor, Ackland and S. Hungerford,
An exploration of GIS architectures for Internet
Environments, In Computers, Environment and
Urban Systems, Vol. 22, No.1, pages 7-23, 1998

[3] Airport Schipol, Amsterdam, the Netherlands
http://www.schiphol.nl/maps/3d.htm, 1999

[4] Alpentour Steiermark, Austria 1998,
http://www.alpentour.at/index.html

[5] Ames, A.L., 1996, VRML 2.0 Sourcebook, John
Wiley&Sons, Inc., New York, USA

[6] Congress center, Graz, Austria,
http://www.gcongress.com, 1998

[7] Coors, V. and V. Jung, Using VRML as an Interface
to the 3D Data Warehouse, In Proceedings of
VRML'98, New York, 1998

[8] Doyle, S., M. Dodge and A. Smith, The potential of
Web-based mapping and virtual reality technologies
for modeling urban environments, In Computers,
Environment and Urban Systems, Vol. 22, No. 2,
pages 137-155, 1998

[9] Gahedan, M., Scatterplots and scenes: visualization
techniques for exploratory analysis, In Computers,
Environment and Urban Systems, Vol. 22, No.1,
pages 43-56, 1998

[10] Kofler, M., The Sodahall VRML Jumpthrou, Project
report, UC, Berkeley, 1996

[11] Pilouk, M., Integrated modelli ng for 3D GIS, PhD
thesis, ITC publication, 1996

[12] Schickler, W., A Virtual reality model for a major
international airport, In Proceedings of the Ascona
Workshop'97, Automatic Extraction of Man-Made
Objects from Aerial and Space Images, Monte
Verita, Switzerland, pages 367-376, 1997

[13] Twente Music Centrum, Enschede, the Netherlands,
http://wwwseti.cs.utwente.nl/Parlevink/Projects/Mu
ziekcentrum/codecompressed/vmc_zonderschisma.h
tml, 1999

[14] University of Rostock, Germany http://www.agr.uni-
rostock.de/iggi/cebit_e/, 1999

[15] Templfi, K., 3D topographic mapping for urban
GIS, In ITC journal, 1998-3/4, pages 181-190, 1998

[16] Zlatanova, S. and M. Gruber, 3D GIS on the Web, In
ISPRS, Com. IV, Stuttgart, Germany, pages 691-
699, September 1998

