
55

� � � � � � � �� � � � � � � �

� � 	
 � � 	
	
 � � 	
 � � � 	 � � � � � 	 � � �� 	 � � � � � 	 � � � � � � � � 	 � �
 �� � � 	 � �
 � � � � � � � � � � � � �

This chapter covers issues specified by the second objective of this thesis, i.e. it is devoted to
system architecture for query and visualisation on the Web. The idea for the approach is
inspired by recent developments on the Web. Chapter 2 discussed the increasing importance
of the Web for information sharing and trade, and presented the new language (i.e. VRML)
to create and visualise 3D worlds over the Web. Chapter 3 investigated the structure of
municipal clients and tasks, and revealed the benefits of the possibilit y for a remote access.
This chapter employs the Web mechanisms to provide remote access to 3D GIS.

The chapter is organised into three parts: 1) a discussion on VRML, 2) an introduction
to the system architecture and 3) problems for dynamic creation of VRML worlds. VRML is
a carrier of the scene parameters needed for the visualisation and interaction and therefore
the chapter provides a detailed review. VRML syntax is discussed to specify whether some
of the parameters (and which) have to be stored in the database. The software for creating
VRML worlds, and their suitabilit y of urban data is discussed in order to select the most
appropriate way for automatic building of VRML worlds. The visualisation software (i.e.
VR browsers) is investigated to detect to what degree the principles of VRML specifications
are implemented and what are the problems. The issue is related to the correct visualisation.

An approach to retrieve and update 3D spatial and non-spatial data over the Web is
introduced. The basic operations (i.e. select object, query and manipulate) needed by the
users are then discussed in detail to exhibit the feasibilit y of the suggested approach. An
extended commentary on essential factors related to the dynamic creation of complex
VRML worlds (i.e. ensuring means for composition of queries and display of spatial results)
aims to clarify whether some parameters require permanent storage in the GIS model.

Specific visualisation requirements derived from the VRML syntax, visualisation
software and the client/server architecture are formulated at the end.

4.1 VRML concepts
The VRML syntax is based on structuring units called nodes, which consist of: 1) the node-
type (i.e. name), 2) parameters (fields), which characterise the functions of the node, 3)
special fields for input and output events (eventIns, eventOuts), which control dynamics in
the scene and 4) the body of the node, which contains particular values or other nodes. More
than 50 standard nodes provide means to define scene and dynamics.

Several nodes are devoted to the design of the scene (see Chapter 2), i.e. description of
geometry (regular and irregular shapes), ill umination (directional, spot, point and ambient
li ghts), materials and textures (draping and mapping of JPEG, GIF, PNG image file
formats). The node dealing with geometry, colours and textures, i.e. the shape node, has

56

three basic sections: appearance, geometry and dynamics. The appearance node cares about
the “solid” perception of the shapes, i.e. material (diffuse and specular colours) and texture.
Since the concept of simple ill umination and shading models is adopted, most of the
browsers provide only Gouraund and Phong shading. "Attaching" texture to surface of the
objects is supported in two ways: 1) simply wrapping a surface with an image, and 2) texture
mapping. The texture mapping requires a second node to be specified, which contains the
image co-ordinates, corresponding to the co-ordinates of the geometry. The geometry of 3D
objects can be described by using predefined primiti ves (cone, box, sphere, etc.) or by sets of
faces, which are represented by co-ordinates of points. The node maintaining faces, which
is important for the thesis (see below), is presented by two sections: 1) co-ordinate section,
which contains all the point's co-ordinates composing an object and 2) description section,
which holds an ordered li sts of points constituting faces that border objects (see Figure 4-3).
The normal vector of each face is computed on the basis of the right-hand rule. For
example, the normal vector of a wall with anti-clockwise orientation of the points has a
direction toward outside the building.

Combinations of other nodes, i.e. sensors, routes and interpolators, introduce dynamics.
Sensors detect either viewer actions (e.g. mouse move, cli ck, drag), or time changes, or
viewer position (visibilit y, proximity, colli sion). Routes direct the captured event to
interpolators to alter some fields (colour, position, orientation and scale). This mechanism
provides mostly direct animation, which is often insuff icient to describe complex actions.
Script or proto nodes refer to internal or external scripts and user-defined nodes. In the case
of complicated movements and manipulations. Script nodes, i.e. abilit y to execute Java and
ECMAscript programs, supply the user with a tool to design his/her own sensors and
interpolators, and thus expand functionalit y of the VRML. An extension toward access and
connection to other applications and servers can be achieved by using CGI scripts (will be
elaborated further). All the VRML nodes can be aggregated in various complex hierarchical
composites and altered together. More detail s about VRML syntax can be found in Ames
1996 and Web3D Consortium 1999.

4.1.1 Visualisation of urban models in VRML
Plenty of VRML worlds are already designed and hosted on the Web, e.g. to facilit ate
shopping, to provide tourist and historic information, to ease the understanding of scientific
models (geological, biological). Tempfli and Pilouk 1996 report the first utili sation of
VRML as a "walk-through" engine of an experimental 3D GIS. Kofler 1996 presents a
successful walk-through large 3D VRML worlds. Ogao 1977 reports a study on the
suitabilit y of the language for cartographic visualisation. Gahegan 1998 employs VRML
techniques to enhance exploratory visualisation of geological objects (transparency, focus
attention, etc). Schickler 1997 reports a photo-textured model of Atlanta Airport with two
different LOD to simulate the taxiing system. Bodum 1998 utili ses VRML for visualisation
of municipalit y information. Doyle et al 1998, concentrate on an interesting aspect of
VRML implementations, i.e. virtual presence in the design process by avatars. The variety
of experiments with VRML worlds is an indication of the increasing interest in the language
for end visualisation.

57

However, the potentialit y of VRML and VR browsers to manage dynamics and interact
with the model is still underestimated. VRML and VR browsers are generall y understood to
be a system for the visualisation of 3D graphics on the Web allowing real-time navigation.
The specific manner for providing dynamics and maintaining interaction contributes to this
opinion. It is important to reali se that the dynamics introduced has to be described in
advance. If one wants to be able to cli ck on a building, a sensor has to be attached to this
building in the VRML document. If one wants to have the animation of a walk on a street,
the route and the speed of walking have to be specified in a special VRML node. The VR
browser provides, in addition, the freedom to move inside the world while the particular
dynamics runs. These features of the VRML concept are further explored for an
experimental GUI for 3D GIS. In the following text, we will elaborate on the positi ve and
negative characteristics of VRML, with respect to the visualisation process of a 3D GIS of
urban areas.

� � � � � � � � � ! " # � � $ % � % � & � ' # (�) � ' * + , - . # & # / (� & 0 � % " * + , - 1 2 3) / � $ � 0 � $ # (� % ') 4

5 6 7 8 9 : ; < = > ? : @ A 8 9 : B 9 C D 6 E 7 F C B C D A : B G 9 H I J K L M N O P Q D : R 6 G 6 R C A 6 H E Q S

58

Means to describe urban worlds. Between the two geometric representations (i.e. face
and primiti ves), preference has to be given to face description. The predefined primiti ves
provide a simpler and more compact than face description. However, GIS models
maintaining topology are based on boundary representations, i.e. they operate with faces,
points, arcs, etc. (see Chapter 2). Moreover, most of the 3D models are reconstructed from
surface measurements (see Chapter 7) that are diff icult to combine with simple shapes
(cone, sphere, cone). Another reason refers to the texturing of the geometry. VRML supports
the two mechanisms to attach image (i.e. texture map, see Figure 4-1) to geometry, i.e. texture
mapping and texture draping. The more precise adjustment, i.e. texture mapping, is
permitted only for surfaces (composed of faces) or individual faces. The syntax is such that
permits the usage of only one image file per VRML node, i.e. textures for a separate surface
or an individual face have to be available in one image file. If, for example, one face has
textures of different images for its two sides, then the face has to be described in two VRML
nodes. However, there is no way to map, for example, six different images onto the six sides
of a predefined shape cube. The operation in this case is texture draping, i.e. the image
covers the entire shape according to a rule (see Figure 4-2). Thus, an accurate texturing of
the images requires face description of real objects. Texture draping may be quite an
appropriate technique for large surfaces represented by a set of faces, e.g. terrain (see
Chapter 7). The geo-referencing between each polygon (i.e. triangle from TIN) and the
corresponding piece of image (required for texture mapping) is not eff icient: 1) requiring
algorithms to generate image co-ordinates and 2) almost doubling the size of the VRML
world.

The use of faces to describe urban objects inevitably leads to a need to group/separate
objects, which can easil y be achieved by Group and Transform nodes. For example, the
building in Figure 4-3 is a group of three objects (main body, second body and third body) as
each of them is a group of roofs and walls objects. Since the roof and the walls are
represented by faces, they can be textured with separate image files.

Often, real objects used to be represented as lines and points in the GIS model. Although
VRML support descriptions of lines and points, utili sation of predefined primiti ves is
recommended. For example, lines and points can be displayed as tiny cylinders and littl e
spheres. The substitution usually increases the readabilit y of the VRML world. The VRML
standard lines and points frequently cause “disappearing” of the object while navigating
through the model. The effect is observed when the line object lays exactly on a face.

Means to describe large worlds. The Inline node offers a solution to the organisation of
large data, typical of urban areas and often denoted as an obstacle to visualisation. The idea
is that a very large VRML world can be parsed into several small worlds, which can be
hosted separately (even on different servers). The Inline node maintains the reference to the
worlds and their relative position to each other that allows the VR browser to assemble them
into one. The node is quite popular for introducing predefined VRML models in virtual
worlds. For example, models of a desk, a telephone, a fax machine, which are organised as
individual VRML documents, can be located at different places in a room. Some models
with quite complex geometry, sensors and scripts are already available on the Web for free

59

utili sation and distribution (see Reitemeyer 1999). From the GIS aspect, the node may be
successfull y used for symbolising real objects such as trees, cars, planes, etc (see Chapter 8).

The LOD node permits LOD techniques (see Chapter 2) to be applied during
visualisation in a simple and flexible manner. The syntax of the node requires the different
representations and the switching parameter. The different geometric descriptions can be
organised per object (or group of object) and organised in one or several VRML worlds. In
practice, each object can have several representations in separate VRML worlds. Since each
LOD is a regular VRML document, the construction of the LOD becomes entirely the
designer’s wish. LOD might be created either for geometry or texture or both. For example,
frequently used LOD for buildings are: very detailed, e.g. all geometric detail s of the
buildings plus texture; less detailed, e.g. only geometry without texture; and coarse, e.g.
only outlines of the buildings. VRML specifications agreed one parameter, i.e. the distance
between the object and the viewer, to switch between LOD. The VRML worlds created so
far usually have predefined LOD organised in separate VRML documents (Schickler 1997).

T U V W X Y Z [\] ^ Y _ ` X U a b U c d c e f g W U h i U d V U d j k l m

Despite the appropriate means to create 3D urban scenes, the language has a number of
missing features and drawbacks:
• Topology per object: As mentioned before, the face description is based on 2-manifold

subdivision of space, which ensures topology per object but not among objects. Thus,
the representation cannot be used directly for spatial analysis, other than ones derived
on a metric (co-ordinate) basis. For example, the query “are the two buildings
adjacent?” (which can be organised in a Java script) will provoke a check for common
co-ordinates. In this context, the VRML can be used only as an intermediate step
between the 3D GIS model and internal structuring of the browser.

• Lack of a database interface: Originall y, VRML was not thought to allow access to
databases and thus an SQL node is not included in the syntax. On the basis of recent

60

investigations and experiments (Coors and Jung 1998), an elaborated syntax of the SQL
node inside the current version of VRML was suggested.

• Lack of semantic descriptions of models. VRML specification does not intend
maintenance of semantic information, which consequently requires the employment of
other (e.g. HTML) standards.

• Lack of means to manipulate objects: Although providing sensors, interpolators and
routes to simulate interaction (will be discussed), the truth is that the language lacks
editing tools. The browsers are not expected to save the VRML world either.

• Large documents: The VRML world is uncompressed ASCII text, which in practice
results in very large documents. Length has an impact on the time for deli very and
parsing, i.e. the display of the file on the screen. Some of the VR browsers support a
gzip compression, which reduces the deli very time a bit.

a) correctly rendered concave face b) incorrectly rendered concave face
n o p q r s t u t v w o x y z { { | o } r s } ~ s r o } p � y � � } � z � s y z � s |

The description of the scene is the first part of the visualisation process. Yet the VRML
document has to be displayed on the screen by the VR browser. The experience gained with
VR browsers lets us identify various limitations. The first problem is related to the
visualisation of faces with more than three vertices. Although VRML allows an arbitrary
number of vertices per face, the rendering engines used by browsers (mostly OpenGL,
Direct3X) require triangles. Non-triangulated faces influence the display in two directions:
wrong visualisation of the face (see Figure 4-4) and incorrect display of the spatial
relationships of two objects (e.g. a line that is supposed to rest completely on a surface might
fly over it). This means that the browser has to activate algorithms for the triangulation of
non-triangles. Two types of triangulation are provided: for concave and convex (default)
faces. The choice is made on the basis of a flag in the VRML world. Since the algorithms
for concave triangulation are time-consuming and their permanent usage is not
recommendable, there are two alternatives: 1) execution of the triangulation algorithms
prior to the design of each VRML world, and 2) database storage of concave faces. Further
comparison between the approaches is given in Chapter 5.

Another problem arises in the visualisation of holes. Based on the properties of 2
manifolds, the rendering engines need “opening” of the holes, i.e. connecting to the
bordering face. Not all the VR browsers can handle holes, but the capable ones require
opening. The operation can be achieved by a special ordering of the vertices. For example,

61

the face in Figure 4-5, which has two holes, must have the following sequence of vertices:
1,2,5,6,7,8,2,3,4,11,12,9,10,11,1. The special order combined with a flag for concave face
will enable a correct visualisation. A similar problem arises in the visualisation of
overlapping or hosted faces. For example, one of the holes on Figure 4-5 may be a window,
which has to be associated with a different colour. Similarly, to the visualisation of concave
faces, an appropriate partitioning of the faces can ensure the correct visualisation.

a1

a2

a9

a11

a12

a3

a4
a8

a7

a5
a10

9

12 11

10

a6

8
5 6

7

3 4

12

� �

4.1.2 Approaches to design VRML worlds

Software to generate a VRML world in its complete functionalit y is still t o come. Since the
birth of VRML, many vendors have already extended their file format to create VRML;
others have started development of the software, based only on the VRML world format. To
date, several types of computer programs can be used to create VRML worlds (see Figure
4-6). While the first group of software only exports, the second group exports and imports
VRML worlds. The VRML worlds created by CAD and GIS are only scenes for
visualisation, lacking the dynamics and possibiliti es for interaction. The second group
comprises various software, which can be divided into three groups, i.e. VR modellers,
VRML editors and VRML modellers. VR modellers (Medit, Pioneer Pro) provide extended
tools for the design of ill umination, shading models and texture mapping, viewing points,
and camera positions, and they create richer VRML worlds than the first group. Most of
them provide plenty of texture and shape libraries with means to map textures, modify and
deform objects, create animation, etc., which allows fast and eff icient design of 3D models.
Unfortunately, the VRML nodes introducing dynamics (interpolators, sensors, routes) are
not usually supported. VRML editors are extended text editors to manually type the body of
the VRML world. Similarly to some HTML editors of the same range, they facilit ate the
user by furnishing the syntax of the standard VRML nodes. Although they support all the
nodes, the method is not eff icient because of the rather long time to create a single VRML
world.

Perhaps, the most convenient way of designing VRML worlds is provided by VRML
modellers, e.g. V-Realm, VR creator, Cosmo Worlds. This software operates directly on the
VRML nodes, i.e. the user is able to modify the fields of the nodes. The GUI supplies
windows for both graphics and text representations of the VRML world, as the individual
solutions vary.

62

As can be reali sed, software to create VRML worlds exists in many variations. The
extended GUI is the apparent benefit of their utili sation for display, interaction and
modification of VRML worlds. Unfortunately, they are hardly appropriate for our goals.
First, most of the modellers are stand-alone solutions and none of them is designed for
access over the Web. Second, they do not have a connection to a database, i.e. the product of
the modelli ng is a graphics file. Third, the maintained topology (in the modellers and
VRML) is based on a 2-manifold subdivision (see Chapter 2) that requires a 3D topology
creation after each change in the VRML world. An eventual utili sation of such software
would require the development of a number of extensions: 1) translators from and to the GIS
model, and 2) remote access to databases. Moreover, each user accessing the system must
have installed the modeller and the extensions on his/her computer, which will effect the
overall price of the system.

V R M L

CAD VR Modeler

G IS

import&export VRMLexport VRML

Others
(PhotoModeler)

D X F , 3 D S ,
S D F , e t c .

VRML
Modeler VR Editor

� � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ � � ¦ ¤ © � � ¨ ¦ � ª « ¬ ® ¤ © � ¯ � ° ¦ ±

Therefore, this thesis concentrates on the possibiliti es provided only by the VRML
specifications to interact and modify 3D scenes, aiming at their maximal utili sation.

4.2 System architecture for a Web 3D GIS
The number of client/server architectures utili sing VRML is still very limited (Coors and
Jung 1998, Dodge et al 1998, GIS technology 1999, IGG 1999, Lindenbeck and Ulmer
1998, Zlatanova and Tempfli 1998). Some of the drawbacks of VRML and VR browsers
li sted above, the intensive improvement of the VRML specifications (three versions in four
years) and the prevalent usage of VR techniques for entertainment (e.g. computer games)
are some of the factors influencing the client/server reali sations based on VRML.

Lindenbeck and Ulmer 1998 present a server application of VRML for geological
surfaces and objects. The surfaces represented as triangular meshes are stored in related
groups of files on the server. The VRML document is created on the fly, according to a prior
selection of data (i.e. triangular meshes). The selection is formulated in an HTML form and
processed by a CGI script. In fact, the options provided in the HTML form correspond to the
names of the files that contain the meshes. The GCI script reads the geometry from the
selected files and creates the VRML document. In this respect, the query completed is a
query on server files rather then a spatial query. The role of the VRML document stops at

63

simple visualisation i.e. complex geological structures are displayed in different
combinations to facilit ate the visual investigation of surface intersections.

The systems presented by Dodge et al 1998 and GIS technologies 1999 make
connections to 2D GIS (ESRI) and visualise some information in dynamically created
VRML documents. The utili sation of VRML is primaril y for 3D visualisation. Since the
third dimension is created by extrusion of a parameter (geometric or thematic) of the 2D
database, the 3D models lack of vertical detail s. More elaborated use of VRML is intended
in the research of the IGG, Rostock 1998. VRML documents are employed to query
thematic attributes (e.g. eaves and ridge height, usage of floors) of objects.

Coors and Jung 1998 report the results of a prototype system (GOOVI-3D) for the
interactive query of spatial and semantic information, and the visualisation of the results.
The approach, based on CORBA-ID and Java applets, establi shes direct access to databases
inside the VRML document. The information is stored in two databases for geometry and
topology, and semantics as the ID of an object is the link between them. The server accesses
at least one of the databases to complete the result of query. The communication between the
server and the client is controlled by Java applets, i.e. the function of the VR browser is only
the execution of the applet. In this respect, the system architecture is client-oriented (see
Chapter 2). The SQL query, which is specified in a speciall y designed SQL node (defined in
a proto node), is conducted by Java applets. The result of the query is a set of ID of objects.
The ID set is compared with the ID of existing objects (named nodes) in the VRML
document and those that are equal are modified, e.g. highlighted. For this purpose, a second
node is constructed to associate a node from the VRML document with the ID of an object.
To manage the link between object and VRML node, an extension of the transfer protocol is
developed. The VRML document is deli vered initiall y as a script, which controls the
relation between ID of objects and VRML nodes. Thus the user can identify the objects,
query them and visualise results. This approach seems very promising but still cannot be
widely implemented because it requires the speciali sed Web protocol IIOP.

4.2.1 Query, visualisation, modification
The system architecture used in our approach is a server-oriented, i.e. the CGI mechanism is
utili sed to access remote information. Among the approaches to access data on the Web (see
Chapter 2), preference was given to the CGI scripting due to the well -experienced cross-
platform mechanism, standard HTTP protocol, and availabilit y of freeware API to access
databases and create HTML fill -out forms. The proposed system architecture is intended for
evaluating and verifying data organisation on the server and therefore less interest is paid to
the functionalit y on the client site. The overall structure of the system comprises a Web
browser with a VR plug-in on the client site and a Web server and a database system on the
server site (see Figure 4-7). The system relies on HTML documents for the composition of
queries and visualisation of data other than 3D graphics. Therefore a plug-in instead of a
stand-alone VR browser is required. VRML documents are intended for identifying
(selecting) objects to query and visualisation of spatial analysis. CGI scripts establi sh the
protocol between the client and the server. They are responsible for the assembling of SQL
queries, the access to the RDBMS and the creation of documents (HTML or VRML) on the
fly with respect to the result of the query. Although in principle similar to the approach

64

presented by Lindenbeck and Ulmer 1998, our system intends more sophisticated tasks for
CGI scripts, HTML and VRML documents and thus goes a step further toward the analysis
(spatial and semantic) of data.

The CGI mechanism with its specific client/server protocol subdivides the process of
query, visualisation and modification of data into several different stages:

User identification and database selection. In the first stage, the user is given options
from which to chose a model (e.g. each town or even neighbourhood might be in a separate
database) and the range of interaction (query and visualisation, updating) has to be clarified.
The database can be selected inside an initial HTML document (by filli ng in a form,
pointing to an area of interest on a 2D raster map) or VRML document (pointing on a 3D
map). The most convenient way is to provide each user with a number of default operations
to query and visualise. Thus each user can send queries and receive responses (HTML or
VRML documents) without restriction, except a change of data in the database.

Query. Recall Chapter 2, where a distinction between queries per object and complex
queries is made. The request for information per object (a particular building, an owner or a
li st of co-ordinates of a parcel) can be organised in two steps: first, the object has to be
identified, and second, the type of the information has to be specified. For example, the
simple query “who is the owner of this building?” will require: 1) the means to point to the
building and 2) an appropriate interface to specify the needed information. The first step can
be formulated either in a VRML or an HTML document. In the HTML document, the query
can be specified in a fill -out form (multiple choice or directly typing SQL queries). This
means that the user has to be aware of the ID of the object in advance, which is often
impossible. The alternative, i.e. pointing the object in the VRML document, is much more
attractive. Despite the lack of a real pointing interface, combinations of sensors and scripts
simulate the same operation (to be discussed in Section 4.2.2). The user visually chooses the
object of interest as in a standard CAD system or GIS.

Both ways of identifying an object activate a CGI script on the server. The script deli vers
an initial HTML form, where the user makes further clarification and sends it back to the
server. First, the form parameters are processed, the data needed according to the request are
extracted, a document is created and then sent back to the client station. Since the CGI
client/server architecture is stateless, each new query initiates the same process and results
in a completely new document created on the fly. Very often, however, some information
from already fill ed-in forms has to be forwarded to the next query. In this case, the
information (some values of particular parameters) has to be memorised. Since the server
has no memory of previous connections, parameters are kept on the client station. The
intermediate document created contains the needed parameters in "hidden" for the user
fields and passes them back to the server with the new query.

The two-step schema described above is appropriate only to query information (non-
spatial and spatial) about a particular object. Many queries and much analysis cannot fit in
the schema due to impossibilit y of clarifying objects in advance. Examples of such queries
are “show the highest building in the town” , “show all the administrative buildings” , “show
the common walls” , “ who are the owners of the buildings along this street?” . The
composition of such queries is rather too complex to be organised in VRML documents.
Therefore special HTML fill -out forms, where the user types either the necessary SQL

65

statement or other appropriate parameters, have to be created and hosted on the server. A
detailed discussion is given in the next paragraph.

Data visualisation. The information deli vered at the client site is displayed either in an
HTML document (text, 2D graphics, etc.) or in a VRML document (3D graphics and text).
For example, the query “show the way from the hotel to the nearest shop for shoes ” will
result in a subset of objects (streets and surrounding houses) that can be displayed in a
VRML document. Animation may even route the user from the hotel to the shop. The result
of a more complex request “show the way from the hotel to the nearest shop for shoes and
the prices of the shoes” will be separated into two steps. First, the VRML document with the
geometry will be displayed. A second user action, e.g. cli ck with the mouse on the shop, will
take care of the creation of an HTML document deli vering information about prices. This
limitation is related to the CGI mechanism to create documents on the fly. The first line sent
by the server is the MIME type of document (see Chapter 2). The creation of two documents
on the fly is impossible.

Scripts : Java,
Javascript

Web server

VRML browser

HTML browser

Web browsers

database query&modification

DBMS

CGI scripts

local query&manipulation

GIS ClientGIS Server

responcequery ;

² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ³ · ¾ ¿ ¹ À · ¶ Á · ¶ Â ¶ Ã Ä ³ ¿ · Ã ¿ µ ¶ · Å Æ ¶ Â Ç È É Ê Ë Æ ¾ ¿ Ä · Ì · Í

Data modification. Using a similar approach, changes in the database on the server can
be formulated and executed. In general, changes can be formulated in a VRML document;
however, they do not effect the data on the server. As specified above, the VR browser is not
capable of saving the modification. The link between the DBMS and the VRML in this
respect is one-way. For example, if operation “drag with the mouse” is provided by the
VRML document, the user can move the object "inside the browser" but he/she cannot send
the newly designed position back to the server. The way out of this limitation is the
execution of CGI scripts, which will deli ver an HTML fill -out form to describe the changes.

Local query and manipulation means temporary changes in the data on the client
station. The local query can be understood as the exploration of some properties that are
described in the VRML or HTML document, but can be activated and/or visualised only by

66

user action. For example, one may want to compare several architectural plans for the
reconstruction of existing facades. The existing facade will be stored in the database and the
user will operate with several new views of the facade available as a separate image files on
the server (see Figure 8-8). Another typical example is the design of vegetation and the
evaluation of its future development. Different types and sizes of trees can be prepared and
send to the client and the user can compare and evaluate the effects in different views. The
way to make such temporary designs of geometric information is provided by the VRML,
i.e. the suite of sensors, interpolators, and embedded scripts. The interpolators and scripts
run only on the subset of data at this particular moment at the client station and,
consequently, do not influence the information on the server, nor other clients.

The resulting documents can be displayed on the client screen as one window with
several frames, several new windows, or combinations of them. In the prototype, system
preference is given to one Web window, split i nto two or three frames. Separate windows
provide the user with more freedom to resize and adjust observed models; however, the
control on displayed information is disturbed, which leads to chaos on the client desktop.
Examples of proposed GUI to query and display results of analysis are given in Chapter 8.

4.2.2 Creation of VRML documents on the fly
The VRML document can be created as a simple document for only visualisation and
navigation or as a complex point-and-cli ck, dynamics, animation enabled document. In the
first case only the functionalit y of the VR browser, i.e. fly-over, walk-through, examine, pan,
zoom, can be utili sed that is applicable for queries where no further information is
necessary.

The second type of VRML documents extends almost unlimitedly the abilit y of both
queries and interactions with the model. The information about any object in a town can be
collected by a series of user actions routing to ECMAscripts, CGI scripts or Java applets.
Thus the next action can be either a new query to the database (on the server) or a query of
the already deli vered VRML document (on the client station). For example, pointing to the
object with the mouse (a ECMAscript, the same document), the user can get specific
information about the building, e.g. the name of the institution using it. The first cli ck on
the building may provide a standard HTML form (a CGI script, a new HTML document)
with optional menu (e.g. the year of construction, the name of the architect). The second
click on the same building may visualise an HTML form (a CGI script, new HTML
document in a new window) where an SQL statement can be formulated. A cli ck on the
send button (a CGI script, a new VRML document) may execute a spatial query (e.g. “show
the neighbouring houses”), which will be visualised in a VRML document. Thus, one
pointing and three following actions by the user (cli cks with the mouse) allow query of
semantic and spatial information about a building.

The same mechanism can be applied in a more sophisticated way to explore complex
buildings, which provide a variety of information, e.g. hotels, libraries, shopping centres.
For example, the first cli cking on the door of a hotel (an ECMAscript, the same document)
will allow the user to enter. The second cli ck on the reception desk (CGI script, new HTML
document in a new window) will show prices and available rooms. The third cli ck in the
VRML document on the button (Interpolators and routes, the same VRML document) of the

67

li ft will open the door. The fourth cli ck on a board to move the li ft (CGI script, new HTML
document in a new window) will ask the number of the floor. The fifth cli ck on the send
button (CGI script, new VRML document) will display the corridor on the 4th floor, and so
forth. In this example, four cli cks of the mouse activate three CGI scripts (three new
documents are dynamically created), one ECMAscript and some VRML interpolators.
Although not directly related to the tasks of a municipal system, the example ill ustrates the
potentialit y of such techniques.

An interesting issue is the creation of such a complex VRML document. First, the
VRML document must allow the identification of the object, e.g. the possibilit y to cli ck with
the mouse. It has been mentioned before that the VR browser is not a complete GUI, e.g. the
point-and-cli ck operation is not a responsibilit y of the browser. The browser reacts to user
actions (other than navigation) only if they are initiall y and explicitl y described in the
VRML document. The identification can be organised in two steps. First, a particular sensor
has to be attached to an object (e.g. building), which will allow the user cli ck on that object.
Second, a reference between the object and its ID in the database has to be supplied to the
user. In terms of VRML semantics, such a link can be establi shed by the definition of a new
node (see Appendix 2). The proposed node is a modification of the standard Touchsensor
and consists of 1) a new field where the ID of the object can be given and 2) ECMAscript,
which references object ID to a corresponding text. The new sensor visualises the ID of the
object when the mouse is over the object. The ID visualised in this way facilit ates the user in
completion of the query. The actual identification is done by a cli ck with the mouse.

Composition and display of the response follow the pointing to the object. What does the
user want to achieve by interacting with this object: text, graphics, image, spatial analysis,
attribute information? In our approach, the CGI script takes the decision as to which sensor
is to be attached what object and what the resulting event has to be. The decision is taken
during the dynamic creation of the documents. In general, the resulting event can be either
fetching an individual file stored on the server or activation of VRML nodes: execution of
CGI scripts, Java, ECMAscripts, Interpolators. Java and ECMAscripts have to be specified
in a script node in the VRML document. Hence, the script nodes have to be embedded in the
body of the VRML document on the fly as well . Clearly, the functionalit y of the system, and
more particularly the GUI, rely on the CGI scripts. Thus CGI scripts become a criti cal
component in the system and require careful organisation. Some of the problems that may
occur are li sted below:
• a drastic increase in CGI scripts in the case of complex sequential queries, which may

complicate their management
• sophisticated algorithms that may become time-expensive with respect to the dynamic

composition of VRML documents
• long VRML documents, which may cause negative effects in two directions: occupation

of the server and long delivery time.
So far, only user actions have been considered as an eventual event requiring responses.

The corresponding action is the result of query. The possible cases are even more
sophisticated: VRML is capable of describing dynamic interactions among objects and time
related changes. Examples include the colli sion of two moving objects, the collapse of a
building after certain period of time or due to contact with another object (e.g. plane), the

68

crash of a plane if it touches the ground, etc. The design of a VRML document capable of
introducing and controlli ng dynamics on the basis of static information, which is usually
available in GISs, is impossible task for CGI scripting.

An elegant way to avoid or reduce the effect of these drawbacks is by storing additional
information in the database, which can help the script to compose the VRML document. To
help in the description of the event-response process, information about the behaviour of
objects is introduced. A variety of parameters, scripts, small VRML documents, animation,
etc. per object that facilit ate and simpli fy the work of CGI scripting can be captured in the
database. Thus, a standardisation of CGI scripts can be implemented that will contribute to a
reduction in their number and size. Long VRML documents can be partitioned into several
smaller ones by recursive execution of the same script. In the example about the hotel and
the li ft, the board in the li ft to move up will be a separate object with semantic and
geometric characteristics and behaviour (move up). This behaviour can be described on a
database level as “on-click activate which-floor CGI script” with two parameters event
initiator (EI) and event response (ER). The number of parameters may vary depending on
the type of interaction. The crashing-on-the-ground plane, for example, will need three
parameters to identify the event (touch), the confli ct object (ground) and resulting action
(crash, e.g. short animation). Further elaboration on the issue will be given in Chapter 5.

4.3 Visualisation requirements
As discussed above, the VRML documents might contain a lot of data to represent geometry,
shading, lighting, behaviour, etc. The important issue at this point becomes “supply” of
appropriate data. The data needed for the VRML composition has different weights and can
be separated into two groups: compulsory and extended data. The compulsory data, i.e.
geometry, colours, texture and lights, are the minimum set of information for a simple
VRML document to be visualised in the VR browser. The second group comprises the data
important to establi sh links to other files and scripts or to enhance the GUI of the browser
toward a complex interaction and a dynamic control over the scene. The software that
designs the VRML documents (i.e. the CGI scripts) has to select parameters for both groups
of VRML documents automaticall y. In this context, the existence of supplementary
supporting information on the database becomes essential. Bearing in mind the syntax of
VRML, establi shed rendering principles and the dynamic status of VRML documents in the
presented approach, the following visualisation requirements of the database can be drawn:
• supplement of geometry, appropriate for visualising in the VR browser, i.e. faces, co-

ordinates and orientation of faces and parameters to describe predefined primiti ves in
case of line and point objects

• provision of suff icient information for colouring faces, i.e. diffuse, emissive and
ambient colour

• storage of image files for texturing with appropriate visualisation of image co-ordinates
for texture mapping and parameters for image draping

• fast retrieval of information
• real-time creation of LOD to speed up navigation in large urban models

69

• information about the behaviour of virtual objects to facilit ate the organisation of scripts
and thus ensure eff icient GUI for the query, the dynamic creation of documents and the
exploration of the results.

4.4 Summary
The new Web standard VRML has been presented and its suitabilit y for urban modelli ng,
analysis and visualisation of spatial analysis has been discussed. Several essential aspects of
the discussion can be summarised, i.e. the language: 1) exhibits a potentialit y that can be
successfull y utili sed for visualising 3D data (suff icient reali sm, large amounts of data,
complex shapes, lighting and viewing points can be easil y organised), 2) supplies means to
display spatial analysis, i.e. plenty of techniques to attract attention (animation,
highlighting, pointing), 3) provides mechanisms to explore the models in real-time
navigation mode, which eases the human perception and orientation; 4) allows access to a
broad spectrum of HTML, VRML, multimedia documents on the Web, which facilit ates
urban management by enabling access to a variety of information. Moreover, the utili sation
of VRML exploits the virtual realit y techniques (walk-through, fly-over, explore) provided
by the VR browser. Although VRML is not designed as a front-end engine for a Web GIS
warehouse, extensions of the language, i.e. creating new nodes, Java, ECMAscript, CGI
scripts, can fill up gaps and extend the interface. The conclusion that the language is
appropriate for urban 3D modelli ng is drawn. Furthermore, the syntax of VRML requires
the provision of specific information for the successful creation of the document, i.e.
vertices, orientation of faces, colour, texture, descriptors for behaviour and dynamic, lights,
views. Most of such data has to be available at the database level.

System client-server architecture proposes a solution for remote retrieval, query and
analysis of semantic and spatial data on the Web. The approach employs the CGI
mechanism to perform operations at a database level and embedded ECMAscripts at local
(client) level. Such a system would require a lot of CGI scripts to control the complex
process of urban planning unless a standardisation of the operations is implemented. The
maintenance of additional information organised on the database is suggested, aiming at the
improved organisation of CGI scripts. Thus, apart from the data needed for urban planning,
the database has to maintain data supporting visualisation and interaction. Detail s about
database organisation and structuring will be discussed in Chapter 5.

The GUI of the approach is based on complex VRML documents and HTML fill -out
forms, which pursue the provision of suff icient means to query objects and complete spatial
analysis. The suite of VRML and HTML documents is capable of either selecting predefined
queries or composing new ones. The resulting dynamically created new VRML documents
may be as complex as the starting one and, hence, used for further queries in two directions:
to the server and to the local model on the client site. This is to say, our approach extends
the role of the VRML from an end product for visualisation to GUI to identify objects, query
their characteristics and spatial relationships. Supplementary SQL fill -out forms composed
in HTML documents provide free standard access to all the information stored in the
integrated database. The suite of SQL forms and VRML documents can act as a GUI to edit
data and control changes on the server as well . Chapter 8 presents a number of GUI to
perform a variety of operations on 3D GIS data.

70

The system architecture presented here allows fast development of low-cost applications.
The client site has to be equipped with VR and Web browsers, which are available at very
low prices or as freeware on the Web, i.e. the client sites do not cost time or money. Some
investments are necessary but only for the visualisation of the server site. The server side
requires Web server, DBMS and software for communication (i.e. CGI scripts). Again, low-
price Web servers can be employed. Being the oldest method of accessing remote data CGI
scripting is well supported and facilit ated by various freeware libraries and APIs to access
databases and create fill -out forms. A prototype system based on freeware components will
be presented in Chapter 8.

VRML worlds:
Airport Schipol, Amsterdam, the Netherlands

http://www.schiphol.nl/maps/3d.htm
Twente Music Centrum, Enschede, the Netherlands

http://wwwseti.cs.utwente.nl/Parlevink/Projects/Muziekcentrum/codecompressed/vm
c_zonderschisma.html

Grazer Congress Centrum, Graz, Austria
http://www.gcongress.com

Alpine tour, Austria
http://www.alpentour.at/index.html

