Chapter 6

3D topological relations and SSM

Chapter 5 proposed a spatiad model to represent the spatial extent of objeds in urban areas.
The purpose of the model, as was clarified in Chapter 3, is multifunctiond, i.e. it hasto be
capable of suppying information for spatial analysis and red-time visuali sation. This chapter
is devoted to the potential of the model to respond to spatial queries. Most of the spatia
queries in the urban areas require knowledge about the relationships between two arbitrary
gpatial objeds, eg. "retrieve al the shops which are 500 m from the station”, "show all the
buildings higher than 5 floors in the neighbourhood”, etc. Topological relations, being
invariant over scaling, shift and rotation, have been widely approved by the GIS community
as the most appropriate manner to describe spatial relationships. Therefore, this chapter
estimates the abil ity of the spatial model to identify topological relations.

The derivation of topological reations hereis based on the framework provided by the 9-
intersedion model (see Egenhofer and Herring 1990). The comprehensve formal
categorisation of spatial relationsis completed upon the comparison of the nine intersedions
between topological primitives, i.e. interior, boundary and exterior of objed. The relations
that can be deteded applying the framework are many more than the ones that exist in
redity. Therefore, theidentification of posgble relations becomes an important issue. Several
authors have ampleted studies on the possble topological relations, however, most of them
refer to the 2D domain and only partialy to the 3D domain. The spatial model proposed
focuses on the 3D domain. Therefore the first part of this chapter elaborates on the derivation
on feasible relations between simple objects and proposes a unified procedure for
identification of relationships. A discusson on the completeness of the set of reations
obtained, topologically equivalent configurations and the naming of the reations is
presented.

The second part of the chapter illustrates the manner of deteding any of the relations by
the SSM. The number of operations neaded to deted any of relationships is discused. The
intention is to evaluate of the "cost" of arc removal for spatial analysis. A final deliberation
draws conclusions on the suitabil ity of SSM to identify spatial relations.

6.1 Topological relations between two simple geometric
objects
Suppose two simple spatial ojeds A and B (see Chapter 5) defined as non-empty sets in the
same topological spaceA , then their boundary, interior, exterior and closure will be denoted
by 9A, A°, A™, A,0B,B°, B” and B (see Chapter 2). The binary relation R(A,B) between the
two objeds is then identified by composing al the posshle set intersedions of the six
topological primitives, i.e.

A°nB°0ANB°% A" nB°, A°n0dB,0ANn0dB,A" ndB,A°nB ,0AnB and A" nB",
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and deteding empty( 0 ) or non-empty (-0 )intersedions. For example, if two objeds have
a common boundary, the intersedion between the boundaries is non-empty, i.e
0AnoB=-0; if they have interseding interiors, then the intersedion A°n B°is not
empty, i.e. A°n B°==0 . Thereation R(A,B) is a subset of the Cartesian product of AxB,
i.e. R(A,B) 0 AxB. The intersedion between the six primitives can be represented as an
ordered set given by a3 X 3intersedion matrix, i.e
HA°nB° A° n 0B A°nB'H HD 0 —-DE
R(A,B)=[WANn B° 0AndB O0AnB (=0 o -0r
A nB° A ndB A nB g o -0 -0F

Since ech set intersedion can have dther the empty or non-empty value, different
"patterns’ of the 9-intersedion matrix define different relations. For example, the relation
defined above is digoint.

For simplicity, instead d the matrix representation, a line representation of all the
intersedions wil | be used in the foll owing text. Furthermore, the set intersedions equal to the
empty set will be denoted by O and the non-empty intersedions by 1. Thus, each relation
(being a sequenceof 0 and 1) corresponds to a binary number, which can be transformed to a
dedmal number (see Kufoniyi 1995. For example, the relation between objects with non-
interseding closures (referring to the matrix representation above) can be represented as
00001111, which isthe dedmal number 31. It will be denoted as a decimal code RO31. It is
apparent that different ordering o the intersedions between topological primitives will result
in adifferent dedmal code. In thistext, we will use the order shown in Table 6-1. The benefit
of this manner is that the nine intersedions can be separated into two general groups, which
will be denoted as closure intersections and exterior intersections. The dosure intersedions
represent the 4-intersedion model built on the mutual intersedions of two topological
primitives (interior and boundary), i.e. dAnodB, A°nB°, 0AnB° and A°n0dB. The closure
intersedions are positioned to the left side of the intersedion between objeds exteriors, i.e.
A nB . The eterior intersedions are the four intersedions between the exteriors and
closure, i.e. A ndB, A nB°, dAnB  and A°nB . They are placed on the right of the
intersedion between bath exteriors. Since the set intersedion A nB™ is constantly non-
empty for the defined spatial model (see Chapter 5), it "acts' as a delimiter between closure
and exterior intersedion. The advantage of the linea ordering and corresponding dedmal
coding isthredold:

» facilit ates the emparison between 4- and 9-intersedion models

e increasesthereadability of relations, i.e. the ade @n be used instead of aname

» facilitates the analysis of reations, i.e. groups of reations with spedfic properties

can be identified.

Table 6-1: Decimal coding of therelations

0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0AnNB~  A°nB”

RO31 0 0 0 0 1 1 1 1 1

The theoretical number of all the relations that can be derived from the matrix is 2°, i.e.
512relations. However, only a small number of them can be realised in redity. For example,
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the only possble configurations between two bodies in 3D or two simple surfacesin 2D are
only eight (see Figure 6-6 and Figure 6-5). The identification of possble relations is as
important as the identification of the relations. From the implementation point of view, the
elimination of impossble relations will reduce the number of combinations to be examined
and thus improve the performance of the spatial moddl.

The way to spedfy possible relations is based on the dimination of impossble ones. To
eliminate impossgble relations, negative wndtions are composed. Some intersedions (or a
combination of intersedions) between topological primitives can never occur in redity, and
al the relations that contain these intersedions (or the combination) can be seaurdy
excluded. For example, the definitions of SSM ensure that the intersedion A nB ™ is non-
empty for any two objeds. This can be expressed verbally as a negative mndition "the
intersedion A nB isaways non-empty" and represented according to our notations as:

0ANn0B A°nB° 0ANB° A°noB AnB” A noB A nB° 0AnNB~  A°nB”

CX - - - - 0 - - - -

On the basis of the 9-intersedin model and following the "eli mination-of-impossble-
relations’ approach, several authors have identified relations between points, lines, surfaces
and bodies. Egenhofer and Herring 199, Egenhofer and Franzosa 1991, Molenaar et a
1994 Kufoniyi 1995investigate relationships between spatial objects in IR% Egenhofer 19%
presents relations among body objects in IR 3. De Hoop et a 1993 report a method to
distinguish between multidimensional objectsin IR®. The outlined possble relations between
objeds are usualy ill ustrated with drawings, i.e. sketches of possible object configurations.
Bric 1993 investigates the largest combinations of objects, foll owing the condition approach
for dimination introduced by van der Meij 1992. The study, however, does not provide
drawings of the deded configurations. The different conditions used for objeds in 2D and
3D space as wdl as the lack of a complete list with drawings for al the posshble
configurations, have motivated the study presented here.

The analysis of the negative cmnditions used by the authors has revealed a significant
variation in the number of conditions. Egenhofer and Herring 199 present 23 negative
conditions for relations in 2D space i.e. relations between points, lines and surfaces. To
cover the 3D stuations, 15 more @nditions have been added by van der Mej 199. Bric
1993 operates with 40 conditions as 30 of them are used to derive the relations between
simple GO in 3D space and 10 to derive the relations between CnsO. In general, the results,
i.e. the deded posshble relations, can be equivalent despite the different negative conditions
applied. However, the seledion of aminimal set of negative mnditionsis quite dallenging.

The verbal description of the negative nditions varies as well. Since most of the
conditions are built on the "if...then" construction, the cnditional (if) and the wnsequent
(then) part of the statement could bereversed. The variety of expressons increases with the
number of intersedions involved. For example, the mndition C15 (see below) can be
represented in at least two more ways depending an which intersedion will be mentioned in
the"if" part. It may be written as:

1. If B'sinterior intersed with A's exterior, then either B's boundary must intersea with

A'sexterior or A'sinterior must intersea with B's exterior or bath, and viceversa.

2. If A'sinterior does not intersed with B's exterior, then A's exterior cannot intersed

only with B'sinterior.
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In our experience the different expressons crede difficulties in the comparison of
different negative @nditions. Therefore, in the foll owing text, the negative cnditions, which
can be found among the ones presented by the Egenhofer and Herring 1992, are represented
by the same verbal expresson.

The study on the possgble relations has two phases. Firg, the set of negative anditionsis
presented. It consists of a computation of relations and verification by drawings. Seand, the
obtained relations are investigated for completeness A secnd approach based on analysis of
possble exterior intersedions, is elaborated.

6.1.1 Negative conditions

The spatial objects considered are simple objects without holes, tunnels and sdlf-interseding
parts. The @nditions are derived from the topological primitives as they are defined in the
spatial modd (see Chapter 5). No spedal conditions related to some spedfic characteristics
of the spatia model are included. Since the spatial ohjeds considered in the model are the
GO named point, line, surface and bady, the crresponding notations P, L, S and B will be
used to represent the relations. For example, R(L,S) means that the binary relation concerns
line and surface as the line is the first object. The relation R(S,L) is the inverse relation,
which isreferred to by the vice wersa part of the ndition .

In general, the negative mnditions are mmposed on the basis of posgble or non-possble
intersedions of topological primitives (i.e. interior, boundary and exterior) of two objeds. In
redity, the intersedions between the topological primitives depend on three parameters: the
dimension of the objects, the dimension of the space (which isused to define a ©-dimension
of the object) and the type of boundary (conneded or disconneded). For example, the
boundary of a surface in IR ? cannot intersedt with the interior of another surface without
crossng the baundary. However, thisis not the ase in IR 3. Due to higher space dimension,
the boundary of the surface @n interseds with the interior of the other surface The three
parameters, however, canot be used to define straightforward negative nditions.
Unfortunately, each configuration of objeds has different parameters (see Table 6-2). For
example, the relationships between lines in IR are redised under the following perameters:
the two objeds have an object dimension one, the space dimension is two and bath objeds
have disconneded boundaries. The parameters for the relationships between surface and
surfaceinIR® are different: the objed's dimension is two, the space dimension is three ad the
boundaries of the surfaces are mnneded. However, many of the negative cnditions are
derived on the basis of one or another parameter that till permits a certain grouping.

Table 6-2: Parameters influencing the possibility of relations

Parameters Dimension of objects Co-dimension of objects ~ Connectivity of boundaries

Objects First Seoond First Seoond First Seoond
R(P,P)in1D, 2D, 3D 0 1,23 1,23 C

R(P,X) in 1D, 2D, 3D 1,2,3 1,2,3 0,12
R(L,L)in1D 1
R(L,L)in2D
R(L,L) in3D
R(L,S)in2D
R(L,S)in3D
R(L,B)in3D
R(S,S)in2D
R(S,S)in3D
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R(SB)in3D 2 3 1 0 C C
R(B,B) in 3D 3 3 0 0 C C

The 25 negative mnditions defined are classfied in 13 groups according to the dimension
of the objects, the m-dimension and connedivity of the boundaries. The nditions 1-22
apply to dbjeds with non-empty topological primitives. The conditions for points, which are
defined with empty interior, are given at the end, i.e. conditions 23-25.

1. Conditionsfor binary relations between any objects: R(L,L) in IR, R(L,L), R(S,S),
R(L,S) and R(SL) in IR? R(L,L), R(SS), R(B,B), R(L,S), R(L,B), R(SB), R(SL),
R(B,L), R(B,S)in IR*

1. The ederiors of two oljects alwaysintersed, i.e.

R(AB) 0AndB  A°nB° 9AnB° A°ndB A nB- A TndB A nB° 0AnB~  A°nB”

C1 - - - - 0 - - - -

The @ndition follows diredly from the definitions. The intersedion of the eteriors of
two objeds is the anpty set only if the dosure of one of the ohjects is the universe or the
union of closuresisthe universe. The objeds are defined as subsets of the universe U (i.e. the
complement objects are not considered), i.ee AOU,BOU and thus (AOB)OU. The

conditi on diminates 256 hinary relations.

2. If A’s bourdary intersects with B’s exterior then A’'s interior intersects with B's
exerior too and vice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB” A noB A nB° 0AnNB~  A°nB”

C2. - - - - - - - 1 0
C2, - - 1 0 - -

The ondition isrelated to the mntinuity of the space and the spatial objeds embedded in
it, i.e. if two boundaries do not coincide there is aways some interior or exterior between
them. Therefore, if A's boundary interseds with B's exterior, there is A's interior which also
interseds. Both parts of the condition must be applied to al the objects with the same
dimension regardless of the dimension of the space The C2, condition must be applied to
those pairs of objeds where the first object has alower dimension, i.e. R(L,S) in IR? R(L,S),
R(L,B) and R(S,B) in IR®. If the andition is applied immediately after C1, one part of the
condition (C2, or C2,) eliminates 64 relations and bah (C2, and C2,) liminate 112 relations.

3. A’sbounday intersects with at least one part of B and vice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

C3. 0 - 0 - - - - 0 -
C3, 0 — - 0 — 0 — — —

The ndition follows from the definitions of the topological primitives. The interior,
exterior and boundary are mutually exclusive and their union is the universe. Consequently,
if two dbjects belong to one topological space, the boundary of one of them must intersed at
least with one of the topological primitives of the other one. The two parts of the condition
hold for all the relations between oljeds of the same dimension R(L,L) in IR, R(L,L) and
R(S,S) in IR? R(L,L), R(S,S) and R(B,B) in IR®). There is no neal to apply both parts to
objeds with different dimensions due to the more restrictive cndition C6, which eliminates
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one of them. Thus, the first part of the condition has to be applied to relations where the first
objed (A) has the lowest dimension (R(L,S) in IR? R(L,S), R(L,B) and R(S,B) in IR®. The
second part is valid for the viceversarelation (i.e R(SL) in IR R(SL), R(B,L), R(B,S) in
IR®). The mndition eiminates 40 relationsif bath parts are appli ed.

After the first three negative nditions, the number of possble binary relations is
reduced to 104 for spatial ojeds with equal dimensions and to 160 between spatial ohjects
with dfferent dimensions.

2. Conditions for binary relations between spatial objects of equal dimension:
R(L,L)inIR,R(S,S) and R(L,L)inIR? R(L,L), R(S,S) and R(B,B) in IR,

4. If both interiors are digoint then A’'s interior interseds with B's exterior and vice
vesa, i.e

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

C, - 0 - - - - - - 0
Ch - 0 - - - 0 - -

If theinteriors do not intersed, then theinterior of A can intersed either with the exterior
or boundary of B (mutually exclusive topological primitives). The objeds have the same
dimension and therefore the interior of one of them can never coincide wmpletely with the
boundary of the other (the boundary has a lower dimension than the interior). This implies
that the interior lways interseds with the exterior.

5. If A’sinterior intersectswith B’sbourdary, then it must also intersect with B's exterior
andvice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB A nB~ A noB A nB° 0ANB~ A°nB~

C5. - - - 1 - - - - 0
C5, - - 1 - - 0 - -

Since A'sinterior interseds with B's boundary, A's boundary does not coincide with B's
boundary, i.e. there isa part of B's boundary that does not intersea with A's boundary. Due
to the same dimension, if the boundaries coincide, then other topological primitives cannot
intersed with them. Thisisto say that A°# dB and 0A # 0B, which implies that A's closure

does not coincide with the boundary either, i.e A= A°00AZ0B. Hence A's closure
interseds at least with B's exterior, i.e. An B~ #0. Further, A's closure isa union set of A's
interior and boundary, i.e. (A°00A) n B~ #0, which acoording to the distributive low gives

(A°nB)O@ANB )#0. The set union is not the anpty set iff (A°nB™)#0and

(0An B7) #0. Hence A'sinterior interseds with B's exterior.

One part of the condition is true for the relations between oljects with different
dimension as wdll, i.e. C5,for relations when the first object A has the higher dimension.
However, it isnot necessary to use this due to the morerestrictive condition C6.

3. Conditions for binary relations between objects of different dimensions: R(S,L),
R(L,S), R(B,L), R(L,B), R(B,S), and R(S,B).
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6. The dosure of A (the object with the higher dimension) always interseds with the
exterior of B, i.e.

R(A,B) 0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0AnNB~  A°nB”

C6a - - - - - - - - 0
C6y - - - - - - - 0 -
C6: - - - - - 0 -

C6y - - - - - - 0 - -

If the two objects have different dimensions, their boundaries never coincide, i.e.
0A#0B. This implies that bath the boundary and the interior of the objed of higher
dimension intersed with the exterior of the object of lower dimension. Conditions C6, and
C6, have to be applied to relations R(S,L), R(S,L), R(B,L) and R(B,S) and conditions C6
and C64tordationsR(L,S), R(L,S), R(L,B) and R(S,B).

4. Conditions for binary relations between objects of different dimensions and at
least one of the objects has a zero co-dimension: R(L,S) and R(SL) in IR? ,R(L,B)
R(SB), R(B,L) and R(B,S) in IR,

7. Theinterior of A always interseds with at least one of the three topdogical primitives
of B andvice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB A nB~ A noB A nB° 0ANB~  A°nB”

Ca - 0 - 0 - - - - 0
C7, - 0 0 - - - 0 - -

If both interiors are digoint, then theinterior of the objed with the lowest dimension (e.g.
A) can be asubset of either the boundary or the eterior, or bath, of the opposite objed (e.g.
B). Thismeansif the interior of A does not intersed with the boundary of B, it must intersed
with its exterior. The first part of the condition must be applied to relations where the first
objed (A) hasthelower dimension, i.e. R(L,S) in IR? R(L,B) and R(S,B) in IR®. C7, must be
applied to the reverse relations. The condition is true for all the obeds of the same
dimension, i.e. R(L,L), R(S,S) and R(B,B), as well. However, the more restrictive mndition
C4, which eliminates alarger number of relations, is applied in these @ases.

5. Conditions for binary reations between objects when at least one of the objects
has a zero co-dimension: R(L,L) inIR, R(S,S), R(L,S) and R(SL) in IR? R(L,B) R(S,B),
R(B,L), R(B,S), R(B,B)in IR®.

8. If bath interiors are digoint, then A’s bounday canrot intersect with B’'sinterior, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0ANB~  A°nB”

C8. - 0 1 - - - - - -
C8, - 0 - 1 - - - - -

Sincethe co-dimension of B is 0, the interior of B interseds with bath A's boundary and
interior. A's boundary has to crossB's boundary (due to the co-dimension), which requires
the istence of a common interior (continuity of spatial objeds). Since the interiors are
digaint, the interior of B is digoint from the boundary of A too. The condition C8, is
relevant for rdations R(L,S) in IR R(L,B) and R(S,B) in IR®. The mndition C8, has to be
applied tordations R(S,L) in IR? R(B,L) andR(B,S) in IR®.
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9. If A’sinterior intersects with B'sinterior and exterior, then it must intersect with B's
bounday too andvice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0ANB~  A°nB”

C9 - 1 - 0 - - - - 1
C9% - 1 0 - - - 1 - -

Since the co-dimension of B is 0, A'sinterior cannot "leave" the interior to intersed the
exterior without crossng B's boundary. A's interior and B's boundary do not intersed and
hence A'sinterior does not intersed with B's exterior. Both conditions have to be applied to
relations between objeds of the same dimension, i.e. R(L,L), R(S,S) and R(B,B). The first
part of the mndition (C9,) has to be used for relations between an objed A with lower
dimension than ojed B, i.e. R(L,S), R(L,B) and R(S,B). The seand part of the condition is
valid for thereverserdations, i.e. R(S,L), R(B,L) and R(B,S).

6. Conditions for binary relations where at least on of the objects has disconnected
boundaries: R(L,L), R(SL), R(SL), R(B,L), R(L,S), R(L,S), R(L,B).

The next condition raises when at least one of the ohjeds has disconneded boundaries
(i.e it isvalid for lines). The dimension of the secnd object and the m-dimension does not
influence the mndition. Since the line boundary consists of two disconneded nodes, it can
intersed at most with two topological primitives, i.e.

10. A’sbourdary always intersects with two parts of B and vice vesa, i.e.

0ANn0B A°nB° 0ANB° A°noB A'nB” A noB A nB° 0ANB~  A°nB”

C10, 1 - - 1 - 1 - - -
C10, 1 - 1 - - - 1 -

The C10, condition must be appliedwhen the first oljed (A) in the relation has the higher
dimension (R(S,L), R(S,L), R(B,L)). The C10, must be applied when the seacond (B) object
has the higher dimension (R(L,S), R(L,S), R(L,B)). Both parts of the endition are valid for
theline andlinerelation.

7. Conditionsfor binary redations between objects with connected boundaries and at
least one of the objects has a zero co-dimension: R(S,S) in IR? R(SB) and R(B,9),
R(B,B)in IR,

11 If A’s boundary intersects with B’s interior and exterior, then it must intersect with
B'sbounday too, i.e.

0ANn0B A°nB° 0ANB° A°noB A 'nB” A noB A nB° 0ANB~  A°nB”

Cl1, 0 - 1 - - - - 1 -
Cl1, 0 — — 1 — 1 — — —

Since the co-dimension of B is 0, the mnneded boundary of A can intersed with B's
exterior and interior iff it interseds with B's boundary. Thus condition C11,is applicable for
R (S, B) and conditions C11, for condition R(B,S)

8. Conditions for binary relations between objects with equal dimensions and zero
co-dimensions: R(L,L)in IR, R(SS) in IR?and R(B,B) in IR,
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The ontinuity of the spatial objeds and the space they are embedded in, restricts the
interior and boundary to mutually either intersed, or coincide or be digoint. In the ase of
intersedion and digoint, a subset of at least one boundary (interior) aways interseds with
the opposite eterior (continuity of spatial objects).

12. If both boundaies do not coincide, then at least one bounday must intersect with the
oppdasite exerior, i.e.

0AN0B A°nB° 0ANB° A°noB A nB” A noB A nB° 0ANB~  A°nB”

C12 0 - - - - 0 - 0 -

13. If both interiors do not coincide, then & least one bounday must intersect with the
oppdasite exerior, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0AnNB~  A°nB”

Ci13 - 0 - - - 0 - 0 -

14. If A'sinterior intersed with B's exterior, then A's bounday must also intersect with
B'sexerior, i.e.

0AN0B A°nB° 0ANB° A°noB A'nB” A noB A nB° 0ANB~  A°nB”

Cl4, - - - - - - - 0 1
Cl4, - - - - - 0 1 - -

9. Conditions for binary relations between aobjects of the same dimension and non-
zero co-dimensions: R(L,L) in IR?and R(S,S) in IR

15. If A’sinterior is a subset of B's interior, then A's exterior intersects with bah B's
bounday and B’s interior andvice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB A nB- A TndB A nB° 0AnNB~  A°nB”

C15, - - - - - 0 1 - 0
C15, - - - - - - 0 0 1

Since the interior of A does not intersed with the boundary and exterior of B, the
boundary of A does not intersed either. Consequently, A's exterior mugt intersed with bath
B's interior and boundary. The @ndition is also true for every two objects of the same
dimension but when the @-dimension is zero the more restrictive wndition C14 is applied.
The non-zero co-dimension alows intersedion of interior and goposite exterior without
crossng the boundary, therefore C14 cannot be used for the relations R(L,L) in IR? and
R(S,S) in IR

16. If A’sinterior intersects with B'sboundary but A’s bounday do not intersect with B's
interior, then A’s boundary must intersect with B’'s exterior and vice \ersa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB” A noB A nB° 0AnNB~  A°nB”

C16, - - 0 1 - - - 0 -
C16, - - 1 0 - 0 - - -

If A's interior interseds with B's boundary without crosing A's boundary, then B's
interior is a subset of either A's interior or A's exterior (due to geder than zero co-
dimension). In bath cases, the exterior of B interseds with A's boundary. The condition is
true for relations between ohjeds of the same dimension and zero co-dimension as well. In
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this case, however, B's interior is only a subset of A's interior, which can be achieved by
applying condition 12.

10. Conditions for binary relations objects of the same dimension with connected
boundaries and non-zer o co-dimension: R(S,S) in IR

As was mentioned, sdlf-interseding spatial objects are not allowed in the spatial model
and therefore they are excluded from the list of possble relations The @nditions li sted below
eliminate closed surfaces (seeFigure 6-1).

17. If A’s interior does not intersect with B's bourdary and A's bourdary does not
intersect with B’s interior, then both boundaies either intersect or not with bah exteriors,
i.e

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

Cl17, - - 0 0 - 1 - 0 -
Cl17, — — 0 0 — 0 — 1 —

18. If A'sinterior and bounday intersects respectively with B's bounday and interior,
then at least one boundaty intersects with the exterior of the other object, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

C18, - 1 1 1 - 0 - 0 -
C18, 1 — 1 1 — 0 — 0 —

19. If A’s closure intersects with B's closure, then it must intersect with B's exterior too,
andvice \ersa, i.e.

0AN0B A°nB° 0ANB° A°noB A nB” A noB A nB° 0ANB~  A°nB”

C19, 1 1 1 1 - - - 0 -
C19, 1 1 1 1 - 0 - — —
ST SANK
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Figure 6-1: Examples of closed surfaces

11. Conditions for binary relations between objects of different dimensions, a non-
zer 0 co-dimension and at least one of them with disconnected boundaries: R(S, L) and
R(L, S in IR,
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20. If A’sinterior intersects with B’sboundary but not B'sinterior, then B'sinterior must
intersect with A’sexterior, i.e.

R(A,B) 0ANn0B A°nB° 0ANB° A°noB AnB”~ A noB A nB° 0AnNB~  A°nB”

C20a - 0 - 1 - - 0 - -
C20, - 0 1 - - - 0

The @ndition C20,isvalid for thereation R(S, L) , whil e C20, holds for the opposite line
and surfacerdation, i.e. R(L, S) . As can be realised, the @ndition is true for all thereations

between objeds with dfferent dimensions, however, when the co-dimension is zero,
condition C8, which ismorerestrictive, isapplied.

21 If the bounday of B intersects with the boundary of A but the interior of B does not
intersect with both the interior and bourdary of B, then the interior must intersect with the
exerior of A, i.e.

R(A,B) 0AN0B A°nB° 0ANB° A°noB A nB” A noB A nB° 0ANB~  A°nB”

C2la 1 0 0 - - - 0 - -
C21, 1 0 — 0 — — — 0

The ondition Cs21,is valid for the relation R(S, L) , while C21,, holds for the opposite
line and surface relation, i.e. R(L,S). It is apparent that the condition is true for all the

relations between oljeds with different dimensions;, however, if the ©-dimension equals
zero, the more restrictive mndition C7 isapplied.

12. Conditions for binary relations between aobjects of equal dimension, non-zero co-
dimension and disconnected boundaries: R(L,L) in IR? and IR®.

22, 1f A'sbowndary is a subset of B'sboundary, then the two boundaies coincide and vice
vVersa, i.e

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0ANB~  A°nB”

C22, 1 - 0 - - 1 - 0
C22, 1 — — 0 — 0 — 1 —

According to definition 4, boundaries of A and B are sets of exactly two nodes. Then if
A's boundary is a subset of B's boundary, then the two nodes must be a subset of B's
boundary. However B's boundary is also a set of exactly two nodes. This implies that bath
boundaries must coincide, i.e.

Let 0A={{N;},{N;}}, oB={{ N} {N}}and 0AOO0B. This implies tha

{NE{IN; B O NEL{N}} . Since the cadindity of the two sets is equd, then either
{N;i} ={N }and {N;} ={N;}or {N;} ={N;} and {N;} ={N}.

13. Conditionsfor binary relations between objectswith at least one empty interior:
R(P,P), R(P.L), R(P,S), R(P.B), R(L,P), R(SP), R(B,P).

23. If A's interior is the empty set, all the intersections between A's interior and B's
topdogical primitiveswill be the empty set andvice \ersa, i.e.

0AN0B A°nB° 0ANB° A°noB A 'nB” A noB A nB° 0ANB~  A°nB”

C23, - 1 - - - - - - _
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C23, - - - 1 - - - - -
C23, - - - - - - - -
C23 - -
C23, - - - - - - 1 - -

-
|
|
|
[

24. A'sbourdary intersects only with one part of B and vice-versa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

C24, - 1 - - - - - -
C24,
C24,
C24y
C24,
C24

_ 1 _

[ N
L B N I
[l R R B

|

|

|

25. If A's boundary does not intersect with B's bounday, then A's exterior must intersect
with B's boundary and vice vesa, i.e.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

C25, 0 - - - - 0 - - -
C25, 0 - - - - - - 0 -

The set of 25 negative mnditions presented here is the minimal set reported currently in
the literature.

6.1.2 Possible relations

The negative mnditions defined above ae applied to identify topological binary relations
between simple spatial objeds regardlessof the spacein which they are enbedded (i.e. IR IR?
or IR%. A program written in J computes the possble relations.

B A

A B
=0 @@ -::: disjoint Q@uu@un@® w01 meet

A B

) A 8
©-@u@=0 -.» contains Qe Qunl) 5 covers

B A

Gu=m@ -0 inside 8 A
Quumimnl) s coveredBy
A A B
Q@ 0 cqual 0-0-0m@
r2ss  overlap

Figure 6-2: Line and line in IR: 8 relations

Lineand linerelationsin IR Lines are spatial oljects with dsconneded boundaries and
conneded interior. Embedded in IR, their co-dimension is zero (seeTable 6-2). Therefore the
foll owing conditions have to be applied: C1, C2,, C2,, C3,, C3,, C4,, C4,, C5,, C5, C8,, C8,,
C9, C9, C10, C10, C12, C13 C14, and C14,. Since the two objects have the same
dimension bath perts of all the conditions have to e used. The number of identified possble
relations is eight (see Figure 6-2 and Appendix 3) and they are given the names. digoint,
corntains, inside, equal, meet, covers, coveredByY, overlap.
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Lineand linerelationsin IR?and IR® The negative mnditions for R(L,L) in IR?and IR®
are C1, C2,, C2,, C3, C3,, C4,, C4,, C5, C5,, C10, C10, C15, C15, C16, C16, C22, and
C22,. Lines embedded in IR? or IR® have disconneded boundaries and conneded interior but
the @-dimenson is non-zero. Therefore, the negative @nditions that have to be applied
bel ong to the following groups: conditions for all objeds, conditions for objects of the same
dimension, conditions for objects with dsconneded boundaries, conditi ons for objeds of the
same dimension and non-zero co-dimension, and conditions for line and line relations in IR?
and IR3. The number of all the relations is 33. Figure 6-3 presents a geometric interpretation
of al the relations. Egenhofer and Herring 199 report the same number of reations;
however the number of conditions with al their partsis 20. Molenaa et al 1994 report 22
relations. Drawings with their possble geometric configurations are shown in Kofuniyi 1995
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Figure 6-3: Line and line in IR?: 33 relations

Surface and linein IR% The mnfiguration surfaces and line falls in the groups of objeds
with dfferent dimensions, at least one non-zero co-dimenson and ane disconneded
boundary, i.e. the negative mnditionsfor R (S, L) are: C1, C2,, C3,, C6,, C6,, C7, C8,, C9,
and C10, The mnditions leave 19 posshle relations. The eamples of geometric
representations are shown in Figure 6-4 (the cases when the surface is represented as a
redangle). Egenhofer and Herring 1992 and Molenaar et a 1994 report the same binary
relations. Egenhofer and Herring 1992 use one andition lessbut obtain one relation more,
i.e. R511, which isimpossble for smpleline and surface

Surface and line in IR® Surface and line embedded in IR® have the same properties as
surface and line in IR?, however the co-dimension is non-zero (see Table 6-2). The non-zero
co-dimension permits 12 more @nfigurations than in IR3, i.e. the total number of al the
posshblerelationsis 31 (seeFigure 6-4). The conditions used for therdation R(SL) are C1,
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C2,, C3,, C6, C6, C10, C20, and C21,. Bric 199 oltains the same binary relations but
applying 14 conditions (counting all the parts of the condition.

Body and line in IR® Configurations between bady and line can exist only in IR3, i.e.
one of the w-dimensions is always zero. The two objects have different dimensions and one
of them has disconneded boundaries. These properties require utilisation of the following
negative mnditions for R(B,L): C1, C2,, C3,, C6, C6,, C7, C8,, C9, and C10.. The vice
versardation R(L,B) reguires conditions C1, C2,, C3, C6., C6y, C7,, C8,, C9, and C10,. A
comparison with the @nfiguration surface and line in IR%shows that the negative nditions
areidentical and, consequently, the number of possble relations is 19. Examples of possble
geometric configurations are shown in Figure 6-8. Appendix 3, Table 1, contains the
dedmal codes of al the relations, i.e. R(L,B) (on the left) and R(B,L) (on the right). Bric
1993reports the same relations, applying 15 conditions. De Hoop et a 1993 claim the same
number relations without detail s on conditions and drawings.

/ ﬁ o c/’ Mwa
RO31 R127 / R223 R287 R375

4
.J R467
&eoss 4%159 R243 &;n R403 1—

ll ll R407
R063 / R179 R247 R339

R471

[ ]

R479
A\ % '
A : 1
R415
RO95 R183 R255 R343 R499
Jw . {]
E *—& I

R119 R191 R279 R351 R435 l R503

Figure 6-4: Surface and line in IR? : 31 relations (19 in IR?)

Surface and surface in IR The configuration surface and surface in IR 2 has the
following properties; conneded boundaries, equal dimensions and zero co-dimensions. This
implies that the foll owing negative condition has to be seleded: C1, C2,, C2,, C3a, C3;, C4,
C4,, C5, C5, C8, C8, C9, C9,, C11, C11, C12, C13, C14, and C14,. The conditions are
similar to the ones applied to the relation between line and linein IR The only differenceis
C10, which isreplaced with C11. Thus the number of relations is the same, i.e 8, however,
one relation, i.e. R511 is new. Figure 6-5shows geometric representation of the posshble
configurations. Visually, the relation R511 is the same as R255 (see Figure 6-2), i.e. bath
objeds overlap each other. However, the binary (dedmal) representation or relation is
different. Thisrelation is a typical example of probable mideading about the real interaction
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between the oljects if only literal description is used. More detail s concerning the names of
the relations will be provided later. Egenhofer and Herring 1992 have ohtained the same
relations using 20conditions.

Surface and surface in IR® The possble relations between surface and surface ae
determined by the foll owing properties: equal dimension, conneded boundaries and non-zero
co-dimension. Sincethe @-dimension isgreater than zero, the surfaces have the "freedom” to
touch ther interiors without intersedion of boundaries and therefore more relations are
obtained. Thus, only the firg five conditions, i.e. C1, C2, C2,, C3a, C3,, C4,, C4,, C5, and
C5, are mnsidered of al the ones used for R(S,S) in IR?. In addition, C15,, C15,, 16,, 16,
the four parts of C17, C18,, C18,, C19, and C19, must applied to avoid sdf-interseding
boundaries (see Figure 6-1). The number of obtained relations is 38 (see Figure 6-7 and

Appendix 3).
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Figure 6-5: Surface and surface in IR*: Figure 6-6: Body and body in IR%: 8
8 relations relations

Bric 1993 is the only author reporting the matrices with relations between surfaces in IR®
(De Hoop et a 1993 gve only the number of relations—47). The obtained relations however
are different. Relations R117, R159, R277 and R405 are not eleded as posshle and 12 new
relations are reported, which (in our judgement) require sdlf-interseding surfaces. The 12
new relations are R279, R285 R317, R3443 R407, R412, R433 RA445, R4A71, R501, R503
and R509. Reations R279 and R285 could not be interpreted with any geometric
configuration between simple surfaces; relations R317, R343 R407, R413, R433 R445 and
R471 can beredised by self-intersedion of one of the surfaces (seeFigure 6-1).

Body and surface in IR % The wnfiguration body surface in IR ® has similar
characterigtics to surface and line in IR? i.e. one of the objeds has a @-dimension zero.
However, unless sirface (which has conneded boundaries), the line has disconneded
boundaries (see Table 6-2). Therefore, the @ndition C10, which refers to dsconneded
boundaries, must be replaced with C11. Thus the possble relations R(B,S) can be obtained
by the conditions: C1, C2,, C3,, C6,, C6,, C7,, C8,, C9,and C11,. The conditions C1, C2,
C3,, C6., C6y, C7, C8, C9, and C11, determine dl the inverse rdations, i.e. R(S,B). The
number of the relations is 19 (see Figure 6-9 and Appendix 3). The @mmparison between
surface and linein IR?, on one hand (seeFigure 6-4), and bady and surfacein IR® (seeFigure
6-9), on the other hand, shows differenceonly in onerdation, i.e. R255, which isreplaced by
R511 Bric 1993 reports the same number of relations obtained with 16 conditions. De Hoop
et al 1993 give the same number without spedfying the number of conditions.
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Body and body in IR% The last configuration is equal to the surface and surfacein IR?,
i.e. equal dimensions, conneded boundaries, and zero co-dimensions. Therefore the same
negative mnditions must be applied: C1, C2,, C2,, C3a, C3,, C4,, C4,, C5, C5,, C8,, C8,,
C9, C9, C11, C11,, C12, C13, C14, and C14,. The number of possble relationsisagain 8.
Figure 6-6 shows examples of posshble geometric configurations.

Paint and point: Sincethe points are oljects with empty interior and equal dimensions,
the mnditionsthat to be applied are C1, C23, C23,, C23,, C23;, C23,, C24,, C24,, C25, and
C25,. These mnditions eiminate 510 relations and leave only two, i.e. equal and dgjoint.

Paint and any other object X: R(P,X), R(X,P). The reations between a point and any
other ohjed are only three i.e. apoint can be digoint, lay on the boundary of an object or on
itsinterior. These @mnfigurations can be obtained by applying conditionsfor R(P,X): C1, C3,
C6,, C64 C23,, C23,, C23, C24,, C24,, C24. and C25,The reverse relations R(X,P) require
the mnditions: C1, C3,, C6, C6, C23, C23;, C23, C24y, C24,, C24 and C25,.
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Figure 6-7: Surface and surface in IR : 38 relations

124



R255

body @=@ line

& face of intersection

R317

3

O node of intersection
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All the possble relations computed on the basis of the negative cnditions are given in
Appendix 3. Thetotal number of al the binary relations between simple objects according to
the 9-intersedion modd is 69. Table 1 (Appendix 3) contains the binary relations and the
corresponding dedmal codes. Therelations are sorted in an ascending order acoording to the
dedmal code. The dedmal coding paces relations with lessnon-empty intersedions between
interior and boundary at the top of the table and relations with more non-empty intersedions
at the battom of the table. Sincethe first four columns represent the dosure intersedions, the
16 relations according to the 4-intersedion model cen clealy be distinguished from the
additionally identified ones acoording to the 9-intersedion model. The relations in the table
are subdivided into 16 groups corresponding to the 16 closure intersedions. Four closure
relations have inverse relations, i.e. the rdations of groups 2&3, 6&7, 10&11 and 14 15.
Such relations can be represented by one geometric configuration of spatial ohjects (e.g.
Figure 6-6 and Figure 6-7).

6.1.3 Completeness of the obtained relations

The ompleteness of the reations is of great importance to the development of algorithms
and operationsto identify relations. As can be observed from the sketches, many relations of
spatial ojeds belong to only one group of relations (see &so Appendix 3). For example,
asurface and line can relate acoording to the relation R375 (see Figure 6-4). The reation
belongs to group 12. Sincethe @nfiguration does not have another relation from this group,
the dosure intersedion is sufficient to conclude in support or against the relation. Thus the
operations related to inspedion of exterior intersedion can be omitted. The benefit will be
the improved performance of the spatial queries based on this topological relation. Such
shortening o the query process is affordable only if the empleteness of the possble
relationsis ensured.

The procedure followed above relies on the @rred composition of negative wnditions.
Drawings of the possble @mnfigurations of spatial objeds are used for final approval of the
resulting relations. The approach has the wesk characteritic that it canot control the
strictnessof the negative mnditions. Somerisk exists that a cndition might be too strict and
cause dimination of configurations that are realisable in reality. The relaxed conditions that
leave relations can be identified as wrong by the final proof (sketches of spatial objects)
afterwards. The final proof, however, canot deted omisdon of possble relations. For
example, the conditions presented by Bric 1993 for the surface and surface @nfiguration
eliminate four possble intersedions between smple, non-closed surfaces.

This sedion investigates the relations from a different viewpaint, i.e. the emphasisis on
the possble combinations between the 16 closure intersedions and the 16 exterior
intersedions. The dimenson of objects and the dimension of the enbedding space ae not of
primary consideration.

Sincethe exterior of spatial objects is defined as the set difference between the universe
and the dosure, the intuitive expedation is that there ae avery limited number of possible
intersedions. The exterior of the objed A cannot be restricted to intersed only with the
boundary or interior of the object B. The exterior of A is an open set (by definition) while the
closure of B is a dosed set (by definition), which implies that they never can coincide. This
meansthat always thereis either A'sexterior interseding with other parts of B or B's exterior
interseding with a part of A. Thus we @n spedfy a number of impossble exterior
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intersedions for any object regardiess of dimensions and co-dimensions. The impossble
intersedions are differentiated by the foll owing four satements:

1. The ederior of A never intersects with only B's bounday or interior and vice \ersa,
which eliminates the following exterior combinations.

0AN0B A°nB° 0ANB° A°noB A nB” A noB A nB° 0ANB~  A°nB"

E9 - - - - - 1 0 0 0
E5 - - - - - 0 1 0 0
E3 - - - - - 0 0 1 0
E2 — — — — — 0 0 0 1

2. If A's exterior intersects with B's interior, then B's exterior mugt intersect with A's
interior and vice \ersa, i.e. the following pdterns of exterior intersections are impossble:

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

E7 - - - - - 0 1 1 0
E10 — — 1 0 0 1

Since the boundaries of A and B are dosed sets (by definition), they can coincide. If the
boundaries coincide then A's exterior may (or may not) intersed with B's interior. If the
exterior of A interseds with B's interior, B's exterior must intersed at least with one more
part of A's closure (the previous condition). Since A's boundary coincides with B's boundary,
B's exterior can intersed only with A'sinterior.

The dimination of al the six impossble combinations reduces the possble exterior
interceptions to 10. Thus, the number of candidate relations acocording to the 9-intersedion
modd (considering theintersedion A™ n B™ ) isdecreased to 112.

The next two statements are again true for any configurations of objects, however they
have some exceptions:

3. If A's exterior intersects with B's boundary, it must also intersed with B's interior and
vice-versa (except point objects), i.e. the following exterior intersections do not exist.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

Ell - - - - - 1 0 1 0
E12 - - - - - 1 0 1 1
E15 — — 1 1 1 0

The statement foll ows diredly from the first satement. Sincethe boundary isa dosed s,
there ae some interior and exterior around it. Since the exterior is a open set and cannot
coincide with the boundary (condition E1), it must intersed with the interior.

Exceptionally, the above exterior intersedions are possble only for point oljeds. Sincea
point objed does not have ay interior (by definition), the intersedions cannot be cmposed
and they are assumed empty. Hence, these exterior intersedions must appea only oncein the
entirelist of possblerdations.

4. At least one ederior interseds with the dosure of the oppacsite object (except for
coinciding objects), i.e. the following exterior intersection isimpossble.

0ANn0B A°nB° 0ANB° A°noB A nB” A noB A nB° 0ANB~  A°nB”

El — — — — — 0 0 0 0

The statement is not true only for coinciding oljeds, i.e. this exterior intersedion can
occur in combination with closure relation such that interiors and boundaries of the objects

127



coincide, i.e. closure relations 9 (see Appendix 3). Since the point ojed does not have an
interior, i.e. A°n B°=0 , it can occur in combination with closurereations 9.

The 10 combinations of exterior intersedions considered so far leave 101 caendidate
relations out of the initial 255. The exterior intersedions, which are still not analysed, are six
in total. Four of them are mutually inverse, i.e E4& E13 and EB& E14, and therefore they are
regarded together.

The first combination (E4&E13) means that one of the oljeds is inside the other ohed,
i.e. the boundary and the interior do not intersed with the exterior of the opposite object. It is
posgble only if thereis at least one intersedion between the boundary of one of the objeds
and theinterior of the other object. Analysis of this pattern shows threeposshiliti es:

0AN0B A°nB° 0ANB° A°noB A nB~ A noB A nB° 0ANB™ A°nB™

E4 - - - - - 0 0 1 1
E13 - - - - - 1 1 0 0

1. The two exterior intersedions cannot be mmbined with closure intersedions. This
Stuation ocaurs if the intersedion A°nB° is the empty set and dAnB°and A°ndB are bath
empty or non-empty sets. If both set intersedions dAnB°and A°ndB are ampty, there is no
interior that interseds with the opposite dosure; hence one of the objeds cannot be inside the
other one. If they are non-empty, ether bath interiors intersed or one of the interiors
interseds with the exterior of the other ohjed. The only exceptions are the relations between
points and oljeds of higher dimension, which is the result of the empty interior of the point.
The dose relations that fulfil the above rule ae 1,4,5 (due to lack of intersedion with a
boundary) and 12.

2. A close intersedion can be combined only with one of the two exterior intersedions.
Such closure intersedions must have one non-empty dANB° or A°ndB intersedion and at
least one eampty dAndB or A°nB° intersedion. The dosure relations that represent these
intersedionsare 2& 3, 6&7, 10& 11.

3. Closurerelations can be mmbined with bath exterior intersedions. The @aseis posshle
when ether bath the set intersedions dANdB and A°nB° or the threeintersedions A°nB°,
JANB° and A°n B are non-empty. The closure relations that fulfil the first statement are 13,
14, 15 and 16 and closure intersedions 8 and 9 satisfy the last two statements. Thus the
number of possble relationsis 18 (4x0+6x1+4x2+2x2=18).

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0ANB~  A°nB”

E8 - - - - - 0 1 1 1
El4 — — — — — 1 1 0 1

The next combination refers to the case when one boundary is a subset of either the
interior or boundary of the opposite objed and thus does not intersed with the exterior.
Since the boundary must intersed with at least one topological primitive, the dosure
intersedions with empty boundary intersedions, i.e. 1 and 5, are imposshble to combine. If
only one boundary interseds with the opposite interior but not with the opposite boundary;,
i.e. 2 and 3 then only one of the eterior parts (E8 o E14) can be cwmbined. All other
combinations between the 16 intersedions of the dosure and bath exterior parts must be
posdble. This means that the combination of the 16 close intersedions and the exterior
intersedion E8 and E14 gves 24 possblerdations.
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0ANn0B A°nB° 0ANB° A°noB AnB”- A noB A nB° 0AnNB~  A°nB”

E6 — — — — — 0 1 0 1

The E6 exterior intersedions do not permit empty intersedions of the boundaries. In fact,
the pattern can exist for such closure intersedions where the intersedion of boundaries
0A N dBis a non-empty set or the intersedions 0AnB°and A°ndB are bath empty or non-
empty sets. If one of the intersedions dAnB°and A°ndB isthe empty set and the other anon-
empty s&t, then one of the boundaries either interseds with the ecterior or sdf-interseds.
Thismeans that E6 can be cmbined with closure relations 4,8,9,12,13 and 16.

The last pattern, i.e. al the set intersedions are non-empty, can be ambined with &l the
16 posshilities of closure intersedion, which gives 16 relations.

0AN0B A°nB° 0ANB° A°noB A nB~ A noB A nB° 0ANB™ A°nB™

E16 — — — — — 1 1 1 1

Thus the final number of binary relations that must be possble in redlity is 69 (seeTable
6-3), which is exactly the number of relations derived following the negative wnditions
defined in the first approach. The second approach has verified the wrred total number of
binary relations. Further study can be crried out to prove the completenessof each group of
relations between any two spatia objects (e.g. line and line, surface and surface), but it is
beyond the scope of thisthesis.

Table 6-3: Number of occurrences of exterior intersections

A ndB A nB° 0ANB ™ A°nB~ Number

N

PRPORPPFPOORFRPROODOWOOO
N N

B
PRPRRPRRPRRPRRPPPRPOOOOOOOO
PRPRPPRPOOOORRRLRRLROOOO
PRPOORROORRLROORRLROO
PORORORPRORORORORO

E16
Total

[N
[Tole}

It has to be dear that the second approach does not define negative anditions but
discusses the posshility and frequency of occurrence of each exterior intersedion. However,
particular negative cnditions can be mwmposed, which might have the samerestrictive dfect
as the conditions in the first approach. For example, the negative wndition to eiminate the
first exterior intersedions E2, E5, E7 and E10 might be:



If A's exterior intersects with B's interior but not with the boundary, then B's exterior
must intersect at least with A'sinterior and vice \ersa.

0ANn0B A°nB° 0ANB° A°noB AnB~ A noB A nB° 0AnNB~  A°nB”

EC. - - - - - 0 1 - 0
EC, - - - - - - 0 0 1

The literal expresson cannot be found in the list of conditions given with the first
approach; however, the cmbination of restrictive empty non-empty intersedions is
equivalent to the ones given in the @ndition C15. C15 in the first approach has a limited
range, i.e. it is applied to the relations between only two configurations of objeds R(L,L) in
IR? and R(S,S) in IR® According to the analysis of exterior intersedion, the wndition EC
must be applied to dl the binary relations between any types of object, regardliess of
dimensions and connedivity of boundaries. This example is yet another illustration of the
different posghili ties to compose negative wnditions.

6.1.4 Topological equivalent spatial relationships

Although the 9-intersedion model reaognises more relations then the 4-intersedion moddl, it
is gill not sufficient to describe all the possble ones existing in redity. The basic concept of
the modd is the detedion of empty or non-empty set intersedion between the topological
primitives. In practice the set intersedion can be an empty or non-empty set. However, if the
intersedion is a non-empty set, further investigation of the set intersedion is not provided.
For example, referring to SSM, the non-empty set intersedions might be a node, a set of
nodes, a face or a set of faces. Moreover, the set may have disconneded boundaries or
disconneded interiors or bath. Another factor that influences the geometric representations is
the number and position of the disconneded sets. The variety of non-empty intersedions
implies that the objed configurations performing the same topological relation vary as well.
Configurations of objects that reveal the same topological relation are known as topdogically
equivalent. Figure 6-10 and Figure 6-11 show topologically equivalent surface and surface
compositions and Figure 6-12 portrays ssme ejuivalent body and body interactions.

Egenhofer and Franzosa 199 pesent a comprehensve approach to diginguish
topologically equivalent relations between regionsin 2D space, estimating the dimension of
the set intersedions, connedivity, number and arder of disconneded sets and the sequence of
boundary and baundary components. The framework is built on the 4-intersecion model.

Here, we propose a idea to refine topologically equivalent relations in 3D, judging the
non-empty intersedions obtained. The estimation of the intersedions is completed on: 1) the
intersedion set between the two objeds and 2 the non-empty intersedions according to the
9-intersedion moded. To illudrate the ideg we will focus on the relation R223 between
surface and surface (seeFigure 6-10). The relation R223 is represented by seven non-empty
and two empty set intersedions (see Table 6-4). To evaluate all the non-empty intersedions,
three parameters are mnsidered: the dimension of the obtained intersedions, connedivity
and the number of disconneded intersedions. The foll owing notations are used: c-conneded
set, d-disconneded set, cb-conneded boundary set; db-disconneded boundary set, ci-
conneded interior set, di-disconneded interior set. The type of intersedionsis denoted by n-
anode, nn-aset of nodes, f-aface, ff-aset of faces.
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Table 6-4: Properties of the set intersections for relation R223

§

Eé 3 m o 2 o 2 o o -

o] C C C C c c c C C

=) p:S % 3 % < < < 3 %
R223 0 1 1 0 1 1 1 1 1
A nn,db,ci - nn, ¢ nn, d - - nn, ¢ ff,d, 1 nn,d, 1 ff,d 1
B f,chb,ci - f,c nn, ¢ - - nn, ¢ ff,d, 1 nn, ¢ ff, c
C nn,db,ci - nn, ¢ nd 1 - - nn, ¢ ff,d, 1 nn,d, 1 ff,d 1
D nn,db,ci - nn, ¢ nd 1 - - nn, ¢ ff,d, 1 nn,d, 1 ff,d 1
E nn,db,di - nn,d,1 nn, n, d, - - nn, ¢ ff, d, 2 nn, ¢ ff,d, 1

2

F nn,db,di - nmn,d,1 n,d 3 - - nn, ¢ ff, d, 2 nn,d, 1 ff,d 2
G nn,cb,ci - nn, ¢ nn, ¢ - - nn, ¢ ff, d, 2 nn, ¢ ff,d, 1
H f,ch,ci - f, c nn, ¢ - - nn, ¢ Ff,d,1 nn,c ff, c

The ®lumn "intersedion set" contains the characteristics of the set obtained as
intersedion of objeds. The remaining columns contain characteristics of the set intersedion
between topological primitives of the objeds. Since the "intersedion set” is regarded as a
new objed (surface line, point), a distinction between connedivity of boundary and interior

is provided.
d N o

f)
)

)4

;
"

‘.

°)

>

LAST

0 =y,

\

by
i

[ surface A [ surface B [ surface of intersection A/B === edge of intersection A/B

Figure 6-10 : Surface relations topologically equivalent to R233

Thefirs step dginguishes between threegroups of cases: 1) band h 2) a, ¢, d, g, and 3)
e f (seeTable 6-4). The semnd step all ows further refinement between some of the @ases.
As can be observed from the table, some geometric configurations remain topologically
equivalent, eg. b and h, c and d. However, they cannot be identified as different relations
only on the basis of the threetopol ogical primitives and set theory operations.
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= a- o
R415
R405 R4TTIR439
[Jsurface A [ surface B [0 surface of intersection A/B === edge of intersection A/B

Figure 6-11: Surface relations topologically equivalent to R127, R255, R287,
R405, R415 and R477/R439

Many configurations of objeds in redity cannot be identified as different by estimations
of the intersedion between topological primitives. For example, the type of non-interseding
parts (Figure 6-12, R285) or the position of interseding parts (Figure 6-12, R509) cannot be
spedfied. Metric operations or estimation of bounding boxes have to be involved to
reamgnise these mnfigurations. More detail s on a framework that captures metric detail s to
refinethe cadegories of the 9-intersedion model, can be found in Egenhofer and Shariff 1998
Papadias and Theodoridis 1997 report a study on clarifying spatial relations on the basis of
minimum-bounding redangles of the objects.

\ha
1
A

\_____
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R063 R285 R447 R509

R063

Figure 6-12 : Topological equivalent relations between body and body
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6.2 Topological relations supported by SSM

The spatial model proposed in this thesis lacks a 1D constructive primitive, i.e arc, which
may have impact on the detedion of the relations at implementation level. This sedion
demonstrates availability of all therdationsin the spatial model.

The binary relations are identified on the basis of empty or non-empty intersedions of the
three topological primitives. The definitions of spatial objects, however, are based on
boundary description, i.e. the boundary is materialised by sets of nodes. This implies that the
exterior and, in some @ses, the interior are not explicitly detedable. Although many
configurations of objeds do not require mnsiderations of exterior, some ae distinct on the
basis of the mutual position of closures and exteriors. In general, if therelations that are valid
for a particular objed configuration belong to one group, e.g. surface and surface line and
linein IR® (see Appendix 3), then exterior intersedions are neaded. Therefore, it is essential
to clarify the tracking the exterior and thus identifying the intersedions. As was siown, the
number of combinations of empty non-empty exterior intersedions (A ndB, A nB°, AnB~
and A°nB") posshlein redity is 10, as three of them can occur only for point ohjeds and
one «ists for equal objects. The rdations that appea between point objeds are exceptional,
due to the absence of the point's interior. Later, the text will explain the ase with point
objeds. Here, we will present the way to distinguish between the seven remaining
combinations of empty non-empty exterior intersedion (seeTable 6-3).

Table 6-5: Possible exterior intersections

A nodB A nB° 0ANB ™ A°nB~ Number

El 0 0 0 0 2
E4 0 0 1 1 9
E6 0 1 0 1 6
E8 0 1 1 1 12
E13 1 1 0 0 9
E14 1 1 0 1 12
E16 1 1 1 1 16
Total 69

1. The oombination Elmeansthat the dosures of the two objects are equal, which implies
that the boundaries and the interiors coincide. Hence, E1 can be replaced by the foll owing
expressons.

A°=B°and 0A=0B,0x0AB

2. The combinations of exterior intersedions E4 and E13 imply that one of the ojedsis
inside the closure of the other one. Hence, instead o the exterior intersedion E4 (E13 is
inverse), thefollowing genera expressons haveto betrue

A°0Band A0 B,OxOA

Further, threemore @ases can be distinguished. A'sinterior can be a@ther a subset of 1) B's
interior or 2) B's boundary, or 3) can have non-empty intersedions with bath B's interior or
boundary such that (A°n B°)0d(A°n dB) = A°. Similarly, A's boundary can be ather a
subset of 1) B'sinterior, 2) B's boundary, or 3) can have non-empty intersedions with bath
B's interior or boundary such that (0An B°) 0 (0An 0B) =0A. Each of these ases will be
discussed later in the text with resped to the dimenson of the spatial objeds and posshle
combinations with closure intersedions.
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3. The eterior intersedion E6 requires that the boundaries of the two objects to be
subsets of the dosure of the opposite objed, i.e the expressonsto be mnsidered are:

0A0Band 0B A,OxA B

Three @ses are further identifiable: 1) A's boundary is a subset of B's interior, 2) A's
boundary is a subset of B's boundary and 3 A's boundary interseds with B's boundary and
interior in such way that:

(0An B°) O (0AN 0B) =0A

B's boundary has the same possbhilities, i.e.1) B's boundary is a subset of A's interior, 2)
B's boundary is a subset of A's boundary and 3) B's boundary interseds with A's boundary
and interior in such way that:

(0Bn A°) O (0B n 0A) =0B

4. The mmbinations E8 and E14 refer to spatia configurations where the boundary of

only one objed (A) is a subset of the opposite (B) closure, i.e. dA0 B,0Ox0JA. The
boundary may furthermore be a subset of opposites: 1) interior or 2) boundary or 3) bath
under the condition (0An B°) 0 (0An 0B) =0A.

5. The last possble external condition E16 implies that A is not a subset of B and B is
not a subset of A, i.e.

AnBzAand BnA%B.

In other words the interior and baundary of A have to be examined whether they are
subsets of the boundary and interior of B and viceversa.

The eterior intersedions, however, do not necessarily have to be deded for each
relation. On one hand, the 9-intersedion model does not distinguish more relations in some
configurations: 1) between spatial objeds of the same dimension and 0 co-dimension and 2)
between spatial objects that result in relation R159. On the other hand, many configurations
of geometric oljeds result in a single relation of a particular group o relations (see
Appendix 3). For these @ases, the examination of exterior intersedions can be avoided.

Bearing in mind the substitutions of the eterior intersedions presented above, the
medhanism to identify all the relations defined in the previous section will be eplained. The
text is organised in such a way that relations are wmbined in groups in accordance with the
increasing dmensions of the spatial objects, e.g. the relations between body objeds are
presented at the end. The groups of relations are chosen to illugtrate and discussthe foll owing
isaes: 1) the identification of complete number relations by the spatial model proposed, 2)
operations needed to reagnise arelation, 3) the difference in operations with resped to the
dimension of the objects and 4) advantages and disadvantages of maintenance of arcs.

6.2.1 Point relations

The point relations are the smplest ones. The point is defined without interior with boundary
and closure mntaining one node. The relations obtained for the configuration point and point
objed are two, i.e. R026 (digoint) and R272 (coincide). The first relation requires the
boundary of the points to be digoint, i.e. 0A# dB ,and the seand one requires coincidence
of boundaries, i.e. 0A=0B. Sincethe point ojed is a set of one node, the relation can be
deteded by comparison of the nodes. Considering the relational implementation of the spatial
moddl, the corresponding operation is a comparison of IDs of the nodes. The exterior
intersedions, apparently, are not necessry.
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A point and an objed of higher dimension (line, surface and baly) can result in relations
with codes R031, R092and R284 Thefirst relation RO31 hasthe meaning o digoint, i.e. the
closures must have empty intersedions. Sincethe dosure may result in a set of faces (surface
and baody) but the dimension of the point is 0, the first step is to expressthe set union of the
faces st asa union of nodes. Then the point has to be cmpared for equality with any of the
nodes of the dosure, i.e.

Let N;...N,, aethenodesof the dosureset R i.e. {{ N;}...{N,}} =R

and N , isthe node defining a point objed, i.e. {N,} =P,

m

then N, n(JN; =0, ON; .

i=1

The set operations needed are union and intersection.

The seand relation RO92 refers to a node insde the opposite objed. The interior set of
the non-point object hasto be identified and (for surfaces) the faces have to be expressd as
sets of nodes. Acoording to the definitions of the spatial model, the awmpared line, surface or
body have to contain at least one point, otherwise the relation is not posgble. The operation
that hasto be performed is one intersedion between the point and the set of nodes part of the
other ohjed, i.e.

if N;...N, arethenodesof theinterior set R i.e. {{ N;}...{N,}} =R

and N ,isthenode definingapoint object, i.e. {N} =P,

k
then N, n[JN; 20, for some N; =N,,.
i=1
The last relation R284 requires operations similar to those for R092 The only difference
isthe neel of the set boundary of the non-point object X. The boundariesin bath cases (line
and surface) are sets of nodes and therefore they can be immediately compared with the node
of the point. The boundary of the body has to be presented as a set of nodes. The set
operations required to identify the relation are union and intersedion.

6.2.2 Linerelations

Lineand line

With resped to the dimension of the space embedding the interacting lines, exterior
intersedions are inspeded or not. The zero co-dimension allows identification of relations to
be completed on the basis of closure intersedions. Hence line and line anfiguration in IR
requires, first, identification of the necessary topological primitives for bath lines and,
second, inspedions of closure intersedions corresponding to each relation.

RO31 (A digoint B)
Therelaions can be deteded by the extraction of all the nodes that belong to the closure
of A and theclosureof B, i.e.

it N {NJ} = Aand {{ N}..{N}} =B,

k m
then (JN; n|JN; =0.
i=1 j=1
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R179, R220 (A inside B, B contains A)

Thefirst step is composition of B's interior (empty set, set of one or more nodes) and A's
closure. B's interior has to contain at least two nodes, otherwise it can be immediately
concluded that the relation is not possble. The next step examines whether closure of A isa

subset of B'sinterior A 0 B°, which is completed by the set operation intersedion of nodes.

R255 (A overlap B)

Firg, B'sinterior (empty set, one or more nodes), B's boundary (two nodes), A's interior
(empty set, one or more points) and A's boundary (two nodes) have to be composed. Since A
and B overlap, theinterior of both lines must contain at least one node, otherwise the relation
is not posshle. The next gep is the aalysis of the mwmmon nodes according to the
requirements of therelation, i.e.

NG AN = AN NG =B U N2L{NEY =0A
and {{ N9}...{N"}} =08,

k m m k
then [ JN; n[JN; #0 and N2 n [JN; #0and [JN; n N? 20

i=1 j=1 =1 i=1
k m m k
or JN;n|JN; #0 and N n | JN; z0and JN; n N? 20
i=1 j=1 j=1 i=1
or...
R287 (A meet B)

The relation requires the composition of both boundaries and closures of the lines. Since
the relation is based on non-empty boundary intersedion, there are no requirements to the
interiors, i.e. they can be the empty sets. The next step is analysis of the ammon nodes, i.e
one of the two bounding nodes of A has to coincide with one of the bounding nodes of B. No
other common nodes are dlowed, i.e.

if N =NPwhere N DAand N’ OB,
then (B-NP)n (A-N3)=0.
Therelation is completed on the basis of another set operation, i.e. difference.

R400 (A equd B)

Both the interiors and boundaries of the lines have to be amposed. The second step isthe
comparison between bath the boundaries and interiors, i.e. al the nodes part of the interior
must be equal (the trivial case is when bath of them are the empty set) and al the nodes of
the boundary must be equal as well. An alternative operation is composition of the dosure
and requirement for equality of the dosures.

R435, R476 (A covers B, B coveredBy A)

Therelations neal bath interiors and baundaries of the lines asthe interior of the wvering
element hasto have at least one node deteded in its interior. At least one of the nodes part of
A's and B's boundary has to be equal. Furthermore, the set difference between the dosure of
B andthe boundary node must be asubset of A'sinterior, i.e.
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if N =NPwhere N2 O Aand N> OB,

then (B-N/) O A°.

Thusthe set operationsinvolved are union, intersedion and difference

The onfiguration line ad line embedded IR " n>1 will be used to demonstrate the
application of exterior intersedions to identify the relations. The following text will discuss
only the relations that require exterior intersedions. Hence, the identification of R031, R159
R191, R349 R373and R415isnot presented. All therelations are from different groups and
therefore the dosureintersedions are sufficient. In addition, we will assume that the first two
steps, i.e. compositions of the necessary topological primitives and the detedion of the
neaded closure intersedions, are mmpleted and we will focus on spedalisation of the
relations on the knowledge obtained from the ecterior intersedions.

Group 2 R055 and R063

Both relations have non-empty intersedion of interior and boundary, i.e. A°ndB#0 .
RO55 testhe exterior combination E8 with three sub-cases. Only one of them is possble for
the airrent configuration, i.e. the boundary of B is a subset of A's interior. Hence RO55
requiresthat all the nodes of B's boundary be equal to some nodes of A'sinterior, i.e.

it N AN =Aand {{ N} {N,}} =0B

K 2 2
then [JN; n[JN; =UN; ,
=1 = =

where i = f,l and kb< j <mb.

The relation RO63 will be deteaed if some of the nodes of B's boundary are not a subset
of A'sinterior. The set operations sufficient to complete bath relations are union, intersedion
and dfference

Group 4 R117, R125 and R127

The three relations have the three eterior intersedions E6, E14 and E16. Hence the
differentiation between the intersedions will be on the basis of E6.2 (means exterior
intersedion 6, case 2) and E14.1, which leads to three @ses. Firg, if the boundaries of the
lines intersed with the interiors, then the rdation isR117. Second, if the boundary of one of
the linesis not a subset of the interior of the other line but the other one is a subset, then the
relation is R125 Third, if bath boundaries are not subsets of the interior, then the relation is
R127. All the relations can be identified by the three set operations, i.e. union, interior and
difference

Group 7 R220, R221

The relations have the following exterior intersedions E13 and E14, which implies that
A's boundary is a subset of B's interior in bath relations and the difference @mes from A's
interior. If A'sinterior isasubset of B'sinterior then R220 (A inside B) is deteded, otherwise
R221

Applying the same reasoning, it can be exsily demonstrated that all the relations between
line and line embedded in IR" where n= 0 can be mmpleted.



Surface and line

Since the surface topological primitives are expressed as ts of nodes, the identification
of theline and surfacerelations foll ow the same steps as abave. One differenceis the number
of relations. Since the boundary of the surfaceis conneded, lesspossble relations exist, i.e.
19in IR? and 31in IR®. Another difference raises from the posshility to have interseding
interiorsthat do not contain nodes, i.e. the set interior is practically the empty set. A group of
line and surfacerelationsin IR®will be mnsidered to ill ustrate the smilarity of required steps
and the obstacles caused by "empty"” interiors.

Group 13 R403 R407 and R415

The intersedions neead to be @mposed for bath interiors and baundaries of two objects.
The surface and line interior must have at least oneinterior node. If bath interiorsare equal to
the ampty set, then only R403 is posshble (see below how to distinguish from R339). The
three relations have interseding interiors and interseding baundaries. The difference
between relations is caused by the external intersedions. The first relation R403 has E13 as
exterior intersedion and therefore the line oljed (A) hasto be a subset of the dosure of the
surface (B). In this particular case the only possble combination is A° [ B° 0B and

A0 0B O B . In terms of nodes, it means that all the nodes of A's interior has to be subset
of the nodes of B's interior and the two nodes of A's boundary have to be a subset of the
nodes of B's boundary.

The second relation R407 contains E14, which implies that not all the nodes of A's
interior are nodes of B'sinterior, i.e.

TN} N} = Aand {{ N.} .. {Np}} =B,

k m m
then | JN; n[JN; 2(JN; , ON; OA.
i=1 j=1 i=1

The last relation of the group R415 has E16 as exterior intersedion, which implies that
neither ohjeds interior or boundary is a subset of the other's interior or boundary. For this
particular relation it must be ensured that one of A's boundary nodes does not have an equal
node anong B's boundary nodes.

The above daboration is under the assumption that the interior of the surface and the line
have at least one node asinterior. It can happen that 1) theinterior of alineis exactly the link
between the nodes, e.g. R403, or 2) the link between two nodes lies indde the interior of the
surface This case requires further investigation of the order in which bath interseding nodes
occur in the surface boundary (see Figure 6-13d and Figure 6-13¢). If they are sequential, the
two interiors do not intersed. An identical problem may occur for groups of reations 6, 7,
13, 15 and 16. These ae all the groups that have non-empty intersedions between the
interior of theline and interior of the surface and the boundaries of the lineis a subsets of the
boundary or the exterior of the surface Therefore, the test for sequential nodes aways has to
be performed when the interior of the surface does not contain nodes.

Existence of arcs in such cases helps to identify interior intersedion (the ac will be
deteded as interior of the line), but the cmparison of nodes cannot be avoided. All the
relations that require the test of boundary intersedions need operations between nodes, i.e.
the same groups 6, 7, 13, 15 and 16 Therefore, it is likely to make a predse assessment
without implementing and contrasting of algorithms. The important conclusion for the
objedives of thethesisisthe succesful completion of all the rdations of this configuration.
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Body and line

A node or sequence of nodes is the only possble intersedion between body and line and
therefore the body's interior and baindary has to be expressed as sts of nodes. In principle,
the operations needed to identify particular relations are amilar to those explained aready
for surface and line. Therefore only two groups of rdations, i.e. group 8 and group 14 will be
discussed in detail (seeAppendix 3 and Figure 6-8).

Group 8 R252, R253 and R255

The group of redations requires non-empty intersedions for A°n B°,0An B°and
A°n dB. Suppose A isaline ohed and B is a body object in the rdlation, it is sufficient to
test the intersedions 0An B° and A° n 0B. The positive (non-empty) result is sufficient to
clarify the group. Next, the eterior intersedions have to be examined. The externa
intersedion E13 o relation R252requires the dosure of A to be a subset of the B's closure.
For this particular relation, A's boundary must be a subset of B's interior. Finally, A's interior
must be a subset of B's closure, i.e. (A°n B°) O (A°n dB) = A°. The relation R253 has E14

as an external intersedion, which restricts only the boundary inside the interior of B. Hence
after ensuring that the second boundary node is indde the interior, the condition
(A°n B°)O(A°n 0B) # A° has to be proved. The last relation R255 tes the lessrestrictive

E16 exterior intersedion, which requires one of the boundaries of the line to be digoint of
B'sclosure, i.e. (0ANn B°) O (0ANn 0B) #0A.

Group 14 R444, RA45 and R447

The rdations identify configurations of spatial objects (line A and bady B) with
interseding interiors (A°n B°), boundaries (0AnoB) and interior and baundary
(A°n 0B). The relations are appropriate examples of the same doubtful intersedion as the
one described for surfaces, i.e. the interior of the body interseds with the link between two
nodesin aline (R445and R447). The configuration of a body and a line that corresponds to
relation R444 may be such that the interior of the line does not contain nodes. Then the
intersedion between the interiors A°n B° will be the empty set. A solution to such
exceptional cases could be an additional operation to examine the belonging of the two
"suspicious' nodes to faces (seeFigure 6-13 f,g). If the faces are different, most probably the
link (interior) between them is ingde the body. The etra examination always has to ke
performed when the body's interior lacks of nodes. The groups of relations 10 and 14 require
the test as to the belonging of anode to aface

The relations considered so far are identified on the basis of the set operations (union,
intersedion and difference) on nodes, which will be referred to as node operations. Sincethe
dimension of at least one of the spatial oljects in the pair of geometric objects is lessthan 2,
the only possble intersedion is either a node or a set of nodes. In general, the sequence of
nodes in the geometric objects is ether explicitly spedfied (lines) or can be obtained
(surfaces). Therefore, the order of the nodes in the intersedion set can be establi shed as well.
Further analysis of the nodesin theintersedion set may be utilised to enlarge the range of the
possble relations beyond the topologically equivalent configurations. This posshility,
however, is not eabarated in this text. Thus, we formulate the following general steps to
categorise relations applying node operations:
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» ldentifying objects (and space) dimension

» Composing set boundary, set interior and set closure for the pair of objects

»  Ensuring the needed minimal number of each set of nodes to compl ete the relation

e ldentifying empty and non-empty interior intersedions

» Testing the sequential order (line and surface) and containment in a face (line and body)
« ldentifying empty and non-empty exterior intersedions.

The dimension of the space ca be used to facilitate spatial queries at the implementation
stage. If one would like to skip detedion of some intersedion and thus geal up the query,
then the knowledge about the space dimension might help. Examples of such relations are the
combination line ad linein IR and IR

6.2.3 Surface relations

The next relations refer objeds that can have a face as a resulting set intersedion. Since the
faceis a CnsO with a unique shape and position, it can be enployed to deted relations. The
operations operating with faces are considered face operations. Acoording to the definition,
the dosure of faces constructs the dosure of surfaces. The boundary of the surface however,
is a set of nodes. This implies that some faces have parts in the interior and boundary of
surfaces. In this resped, the face differs from the node, which is either part of the interior or
part of the boundary. Hence, an equality of faces ensures 1) the intersedion of interiors, i.e.
A°nB°#0 or (and) 2) the intersedion of interiors and baundaries, i.e A°n gB# 0O or
0An B°# 0. The seamnd intersedions have to be further clarified by node operations.
Intuitively, the question about the utilisation of only node operations arises. Analysis of
possble surfaces, however, reveals that node operations are not sufficient. Acoording to the
spatial modd, theinterior of aface @n become ejual to the interior of a surface (see Chapter
5), which, in practice leads to an interior without nodes. Quite often a surface ca have all
the nodes stuated on the boundary despite the many composing faces. For example, the
trianguation of a complex surface always results in a surface without nodes in its interior
(see Figure 6-13 a,c). The identification of relations in these ases canot rely on set
operations upon nodes.

To illustrate the operations neaded, we will start with the relations between surface and
surface in IR because they perform with lower complexity compared to the others. The
number of posshle binary relations is eight as the relations (except one, i.e. R255) are the
same as the relation between line and line in IR. The relation determines which topol ogical
primitives of the surfaces have to e composed initially. The interior and closure has to ke
available in bath representations, i.e. sets of faces and sets of nodes, in order to deted most
of therdations.

f4 —%

Figure 6-13: Examples of surfaces interior without nodes
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RO31 (A digoint B)
The relations can be identified by comparing that belong to the dosure of A and the
closureof B, i.e.

it { Fi}...{FJ} = Aand {{ Fy}.. {F.}} =B,

k m
then | JF; n | JF; =0.
i=1 j=1
The set operations union and intersedion are performed on sets of faces.

R179, R220 (A inside B, B contains A)
The secnd reation already needs a ombination of face and node operations. The first
step isa comparison of interiors, for which the equality of facesis sufficient, i.e.
if {F}..{FR} =Aand {{F}..{F }} =B ,
k m
then | JF n | JF; 20,
i=1 j=1
for some F, DAand F; OB.
A suppdementary step must clarify whether the common face have a common boundary

with the surface i.e
if Fcisthe ommon face {{ N.}...{N;}} =odF. and {{ N;}...{N}} =0B,

f m
then | JN; n | JN, =0 .
i=1 =1

R287 (A meet B)

Therelation requires analysis of boundaries, i.e. one or more of bounding nodes of A has
be equal to ane of the bounding nodes of B. No aher common topological primitives are
all owed, which can be by atest for face euality, i.e.

it { Fi}...{FJ} = Aand {{ Fy}.. {F}} =B,

k m
then | JF, n | JF; =0.
i=1 j=1
The result will not change if the Seps are exeauted in reverse order, which is more
appropriate for the unification of the procedure (seebel ow).

R400 (A equd B)
The relation can be deteded by comparing the dosure of surfaces and hence applying
face operations, i.e.

it { Fi}...{FJ} = Aand {{ F}.. {F.}} =B,

k m
then | JF; = JF; , where k=m.
i=1 j=1
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R435, R476 (A covers B, B coveredBy A)

Therelation R435 can be identified by 1) test for equdity of faces and 2) test for equality
of nodes. In the ase of common face one intersedion of topological primitives is non-
empty, i.e. A°n B°# 0, and two may or may not be non-empty A°n odBand A°n 0B. The
needed non-empty intersedion of boundaries, i.e. dAn 0B # 0 has to be deteded by node
operations. At least one node of the nodes part of A's and B's boundary hasto be equal, i.e

if {{N.}...{N}} =0Aand {{ N;}...{N,}} =0B,

k m
then | JN; n | JN; 20,
i=1 j=1
for someN; O0Aand N; 00B, where ka<i < maand kb< j <mb.

The non-empty boundary and the boundary intersedion, i.e. 0An dB # [0, ensures that
A'sinterior exactly interseds with B'sboundary, i.e. A°ndB#0 .

R511 (A overlap B)

Since A and B overlap, the interior of both surfaces must contain at least one @mmon
face, otherwise the relation is not possble. A sewnd node operation has to analyse the
equality of boundaries, i.e.

i N} .. .{N }} =0Aand {{ N.}...{N}} =0B,

k m k k m m
then |JN; n [JN; #[JN; and [N n [ JN; # N, .
i=1 j=1 i=1 i=1 j=1 =1

The operations involved in the detedion of the above relations are a @mbination of bath
face and node operations. The face operations deted the interior and interior intersedion and
the node operations clarify interior and baundary intersedions. Compared with the same
group of relations obtained for line, the cmplexity of operations is not higher. For example,
RA435 for surfaces requires one face (intersedion) and one node (intersedion) operations,
while R435 for lines requires three node operations (two intersedions and one difference).
The simpler boundaries of lines (only two nodes) compensate line and line relations for the
extra operations. However, thisisnot the case for surface and surfacein IR

Surface and surface relations in IR® are the most complex relations to identify as well as
the most frequently observed in redity. The complexity of operations is a result of two
factors:

» Vaiety of intersedions: As mentioned before, the face or set of faces is the most
frequent intersedion of interiors. However, it may happen that two surface interiors
intersed in a sequence of nodes (lines) or asingle node. Therefore, the intersedions
of interiors always have to be tested first for face and second for node intersedions.

« Ambiguity of intersedions. Some intersedions between interiors do not contain
nodes (compare Figure 6-13d and Figure 6-13¢).

The groups of relations that may result in face intersedions are 5,6,7,8,13,14,15 and 14
i.e. rdationswith dedmal codes between R159-R255and R400-R511 The remaining doject
configurations cennot intersed in a face which means that node operations have to be
applied. The groups of relations 4 and 7 are discussed in more detail (see Appendix 3 and
Figure 6-7).
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Group 4 R117, R125 and R127

The first group o relations cannot have face intersedions; therefore, al the topological
primitives can be expressed as Fts of nodes and inspedion of intersedion to be completed
by node operations. The threerelations differ in the exterior intersedions E6, E14 and E16.
In this case, the distinction between the intersedions will be on the basis of the E6.1 (B's
boundary isa subset of A'sinterior) and E14.1. Thisto say that the operations to identify this
group of relations are ampletely equal to the ones shown for line and line.

Group 7 R220, R221 and R223

The group is an example of configurations that may result in face intersedions. The first
operation must be the face operation, i.e. test for equality of faces. The positive result will
ensure that the interiorsintersea (if al the faces of A are part of B, then therelation R220is
the candidate relation). If thetest isnegétive, thereis gill a possbility for node intersedions
of interiors. The two surfaces may intersed in a node or a sequence of two o more nodes
(see Figure 6-7). This means that a test for equal nodes that are a part of the interior is
compulsory.

The next operations for this group are related to the boundaries of the surfaces, which
require node operations.

R220was already discussed above.

R221 requires two more operations (result of E13 exterior intersedion). First, B's
boundary must not have non-empty intersedion with A'sclosure, i.e.

it {{N} . {NJ} = Aand {{ Ni}...{Np}} =08,
then LkJNi AUN, =0
i=1 =1

The second operation is nealed to compl ete the requirements of exterior intersedion (i.e.
E14). The boundary of A must be asubset of B'sinterior.

R223requires again two gperations (based on E16 exterior intersedion): 1) B's boundary
must be digoint from A's closure and 2) A's boundary (interior) must not be a subset of B's
interior. The first operation is anode intersedion, the semnd one can be mmpleted by a test
of faces (interior) or nodes (boundary).

This group of relations has demonstrated the mplex examination of interior
intersedions. However, the complexity is even higher. If the interior of one or two surfaces
do not contain nodes, e.g. the geometric interpretation for R223 A'sinterior and B's interior
does not have a ommon node. The wmparison of equal interior nodes must be modified to
the @omparison of equal boundary nodes. The order of the nodes in the surface with
problematic interior must not be sequential, otherwise the nodes are part of the boundary and
the rdlation is different. The advantage of arc maintenance in such cases is apparent. If the
arc between the two nodes is defined, A's and B's interiors will have a arc as an interior
intersedion and hence no further operations are required. Relations R383 and R447 are
examples of two extreme @ses, i.e. bath surfaces intersed in a sequence of nodes (two
nodes) and none of the nodes is in the interior of the surfaces. However, it should not be
forgotten that these @ses are nditional. Additional operations are necessary only if the
interior does not contain nodes.

The following generalised steps represent the identification of surface and surface
relations:
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1. Identifying space dimenson (the assuumption is that the dimension of the object is
known).
2. Composing set boundary, set interior and set closure for the pair of objects:
e gpacedimension 2: the set interior isa set of faces
e gpacedimension 3: the set interior is both a set of faces and set of nodes.
3. ldentifying empty and non-empty interior intersedions: in the @ase of intersedions of
interiors i.e. A°n B°:
e testfor equality of faces
» testfor equality of nodes
» test for non-sequential order of nodes (conditional).
4. ldentifying of empty and non-empty exterior intersedions: in the case of intersedion of
interiors
» testfor equality of faces.

6.2.4 Body relations

The next configurations of spatia objects are bodies and geometric ohjeds of the same
dimension or less which may have faces as interior intersedions. Recll the spatial modd,
that bodies are @mposed of faces that enclose a space Thus the boundary of the bady is the
set of faces, the interior of the bady is either space or a set of faces and a set of nodes, which
are indde the body. Hence, the variety of possble intersedions is larger than for surfaces.
The boundary (0An 0B) andinterior ( A° n B°) intersedion between spatial oljeds, one of
which is a body, may result in a set of faces (body&body and body& surface), sequence of
nodes (body&body, body&surface and baly&line) or a single node (body& body,
body& surface, body&line and baly&point). However, the cmplexity of identifying
relations does not increase. The foll owing examples demonstrate this.

Body and body

The relations between simple badies in IR® supported by SV are all the 8 oltained from
eight the 9-intersedion model. The operations needed to identify the relations are briefly
mentioned bel ow (see also Appendix 3 and Figure 6-6).

RO31 (A digoint B)
The easiest way to identify therelationsis by comparison with intersedion of boundaries,
i.e
if {{ F}..{FRJ} =0Aand {{ F}..{F.}} =0B,
k m
then | JF; n | JF; =0.
i=1 j=1

R179, R220 (A inside B, B contains A)

Firg, B'sinterior (set of faces) and A's boundary has to be defined. B's interior cannot be
a set of nodes and a set of one faae because the two interiors may intersed only in a set of
faces. Consequently, the identification of the relations can be ssimplified as follows: 1) the
interior as a set of nodes must not be aeded and 2) at least a set of threefaces has to be
deteded, otherwise it can be mncluded straightaway that the relation isnot posgble.
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Second, the boundary of A must be asubset of B'sinterior )AL B°, i.e.
if {{ F}..{FRJ} =0Aand {{ F}.. {F.}} =B°,

k m k
then | JF, n |JF; =[JF -
i=1 j=1 i=1

R511 (A overlap B)

In contrast to similar configurations of lower dimension, the amposition of B's interior
(set of faces nodes) and A'sinterior (a set of faces) is sufficient here. Analysis of the sets of
faces for equdity isthefinalising operation, i.e.

if {{ F}..{FRJ} =0Aand {{ F}.. {F.}} =B°,

k m
then | JF; = JF; , where k =m.
i=1 j=1

R287 (A meet B)

Sincethe set intersedion can be a set of faces or nodes, the boundaries of the two objects
have to be available in bath the set of faces and the set of nodes. The two boundary sets
(expressed by faces) have to be tested for equality and if the result is the empty set, then the
procedure must continue with testing for equality of nodes. It may occur that the number of
nodes is more than two, which indicates a posshility for interior intersedions. Hence bath
the interiors must be examined for non-empty intersedion.

The relation illustrates the benefits of omitting the acs from the spatial model. The
completion of relation requires boundaries of bodies to be expressed as faces, arcs and nodes.
If the intersedion of the boundariesis a single node, it can be deteded by a third operation
after face and arc operations.

R400 (A equd B)
The relation requires only boundaries of the two sets to be composed. The wmparison
between bath the boundariesis pure face operation, i.e.
if {{ F}..{FRJ} =0Aand {{ F}..{F.}} =0B,
k m
then | JF; = JF; , where k=m.
i=1 j=1

R435, R476 (A covers B, B coveredBy A)

The relations neal the availability of boundaries and interiors of the two djects. The
interior of the covering olject must contain at least three faces, otherwise the relation is
impossble. The seand step must ensure that 0B O A° because the faces indde A may have
common boundaries with B. The third step leads to the same compli cations as above, i.e. the
intersedion of boundaries must be dedked with resped to faces and nodes (if the face test
fail s).

Body and surface
Relations between body and surface dightly differ from body to body. The boundary of a
asurfaceis a set of nodes, whil e the boundary of a body is a set of faces. The dimension of the
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boundaries influences the set intersedions. Theintersedion of interiors A° n B° can be only a
face or set of faces. The intersedion of boundaries 0An 0B may result in a node or set of
nodes. The intersedions between interiors and baundaries dAn B° and A° n dB can be only
a set of nodes. The relations of group 14 which nealed extra testing for line and bady
configuration, will be used to il lustrate the operations required (see Appendix 3 and

Figure 6-9).

Group 14 R444, R445 and R447

Whilst the interior of the body is sufficient to be represented by a set of faces, the
boundary of the body and the interior of the surface hasto be expressed by a set of faces and
a set of nodes. Under these mnsiderations, the identification of interseding 1) interiors
(A°n B°) is aface operation, 2) boundaries (0An dB) is a node operation and 3) interior
and boundary ( A°n dB) is a face operation. The interior intersedions are esy to clarify
because they are based on face operations. The externa intersedion of R44 is E13, which
implies that the interior of the surfaceis a subset of both interior and baundary of the body,
i.e

if{F}..{RJ} =~ {F}..{Fp}} =0Band {{ F}.. {Fy}} =B°,

then (LkJFi mUFj)D(OFi n fjlrp):Ol:i .
i=1 =1 i=1 p=1 i=1

The cmpletion of this operation ensures that the boundary of A is also a part of B's
closure. R445 has exterior intersedion E14, which allows a part of the interior to be outside
the dosure of B; however, the boundary must be apart. Therefore, the boundary of A hasto
be surely a subset of B's boundary, i.e.

if{{ N.}...{N }} =0Aand {{ N;}...{N,}} =0B,

m n m
then [JN; n [JN; =[JN; .
i=1 j=1 i=1

R447 meansthat a part of the boundary and the interior of A are outside the dosure. It is
easy to conclude that in that case a face operation to test the interior of A and closure of B is
sufficient, i.e.

it {{F}..{Fo}} =A°and {{ Fy}..{F}} =B,
then LkJFi nUF, ¢LkJFi .
i=1 =1 i=1

In contrast to line and body configuration, the relations of group 14 can be identified
easier. The remaining relations possble for body and surface do not require any spedfic
considerations different from the ones discussd above.

6.3 Usefulness of the decimal codes

The discusson on operations given above reveals interesting properties of the relations based
upon the dedmal codes, i.e.:
e the number of reations per group increases with the increase the dedmal code,
which implies longer time to derive relations with higher dedmal codes (the number
of non-empty intersedionsto be chedked is bigger)
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« thereis a group with only one relation, i.e. there is no neal to examine eterior
intersedions
« thenumber of posshle eterior intersedionsisonly 10, i.e. six exterior intersedions
do not need examination
» the dosure intersedions can be @mbined with a limited number of exterior
intersedions (maximum seven)
« thegroups of inverse (vice-versa) relations can be deteaded with the same dgorithms.
These properties can be further used to facilitate the development of operations and
evaluate the performance
Another significant advantage of the ades is their utilisation to name the relations. The
introduction of names for dl the 69 relations between different objects is a difficult, hardly
redistic task. The names given to the eight relations already create ax ambiguity. As was
shown, the relation overlap between lines is not the same as the overlap relation between
bodies (seeFigure 6-2and Figure 6-6). Usually, the names established for relations  far are
on the basis of observations of the geometric configuration. While it is quite easy to create a
clear perception about, eg. a parcd, which meets a stred in 2D space it is much more
difficult to judge the @nfigurationsin 3D space The same relations may look different due
to 1) different dimensions and 2) topological equivalence For example, all the surface
configurations, which are presented as relations with codes from R063 to R159 and from
R221to R383might be interpreted as meet interaction (seeFigure 6-7). However, the bodies
configurations for relations R253and R255 can hardly be identified as meet (seeFigure 6-8);
most probably one would say that the line is partially insde the body. The topologically
equivalent relations between surfaces, denoted as R233 (see Figure 6-10), crede different
perceptions, i.e. they cannot be unified under one name. For example, R233b), ¢) and h) case
may be considered meet, while the rest of the cases can be dasdfied as intersect. In this
resped, the amde, being adedmal representation of the exact sequence of binary intersedions
needed for a relation, is not dependent on human perceptions or the dimensions of objeds.
Giving a unique notation of arelation, it can be used as a standard manner to name relations
regardlessof auxiliary considerations.

6.4 SSM for spatial analysis in urban areas

Chapter 3 has clarified a generic set of spatia reationships that has to be supported by the
GIS model. The demanded relations were denoted as adjacency, incluson, part-of and
diredion (e.g. above, under). The relationships which can be obtained employing the 3D
topological relations discuseed above are adjacency, part-of and incluson. Spatidl
relationships related to dredion can be deteded only by metric computation on the basis of
either ojed's CnsO (i.e. nodes) or co-ordinates of maximum bounding boxes of a 3D R-tree
(seeChapters 7 and 8.

Practically, the scope of relationships, which can be deteded by SSM is far beyond the
demanded relations. For example, the user can trandlate the topological relations of groups
2,3,4,9 and 10 (see Appendix 3, Table 1) as adjacency. Some of the relations of groups
6,7,8,14,15 and 16 might be related to inside/outside relationships, others to the relationship
part-of. Apparently theissle needs further refinement with the user.

Moreover, some of the possble relations may never be needed in redity. The possble
gpatial relationships between some objeds may be very limited. For example, the



relationships between two walls or rooms are most likely to be only mee or digoint. The
relationship between awindow and awall is either digoint or inside or meet or (eventually)
equd. Thisis to say that the semantic characterigtics ("meaning") of the objed may be used
to further facilitate development of operations. Consequently, the development of
relationship gperations is dependent on the spatial objects maintained. This implies that the
neaded operations have to e darified with the user after the spedfication of the objects.

The gpatial relationships are the sdledion criteria of the reationship operations (see
Chapter 2). Ensuring support of spatial relationships, SSM enables a large group o spatia
queries and analysis to be performed.

6.5 Summary

It was demonstrated that the possble binary relations acoording to the 9-intersedion model
can be identified with the data organisation proposed in SSM. The possble relations are
derived for simple oljeds, i.e. lines with two disconneded boundaries, surfaces without
holes and badies without tunnels.

The etimation of the suitability of SSM to perform spatial analysis is based upn a
particular category of queries. The assumption is that a spedfic relation has to be identified
between two known oljeds. Queriesthat require such an approach can be "examine whether
the relation between thetwo roofsis R287', "find the building adjacent to the stred ", "ched
whether the pipe goes through the room", "is the tree outside the parcd?', "find the shortest
way to the station". In the last example, the aaswer cannot be obtained by identifying asingle
topological relation; however, it can be derived by analysis of several sub-queries, each of
which isthe relation meet between surface and surface (streds). The dimension of the objeds
and the ade of therelation are known in advance The expeded result is either positive (yes,
the relation between the objects is therequired one) or negative (no, the relations between the
objedsisdifferent). The @seisthe easest for anaysis and implementation. The sequence of
operations can be sdleded appropriately to gptimise the query.

In reality, two more ctegories of queries are possble. The first one requires reagnition
of therelation between two objeds. Thisisto say that the dimension of the ohjeds is known
but the mde of thereation is unknown. For example, "what is the relation between the house
and the garage”, "find the type of interaction of the railway and the road”, "what is the
relation between the parcd and the lamppost”. Such queries, most likdy, will require the
examination of both closure and exterior intersedion between topological primitives. If the
objeds are of dimensions 2 and 3, then the boundaries and interiors have to be inspeded for
both face and node intersedions. Inded, if the result of the dosure intersedions places the
relation in a group, where the inspeded configuration of objeds cannot have another relation,
then the examination of the exterior intersedions can be omitted.

The second category of queries refers to the identification of a relation regardiess of the
dimension of objeds. An examples of such queries are "find al the oheds, which med",
"find all the @mmon walls in the neighbourhood”. The query is relevant for a consistency
ched in the olject reconstruction phase. An implementation of the query is given in Chapter
7 in two ways, i.e. "find oljeds with common nodes" and "find oljeds with common faces’.

Aswas $own, the operations nealed to complete inspedion of any relation are from the
Set operations, i.e. union, intersedion and difference Some exceptional cases require testing
for a sequential order of nodes and belonging to a face Since the node and the face ae sets,
the test for belonging can be wnverted to the operation intersedion. The sequentia order of
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the nodes in a face is explicitly spedfied (see Chapter 5), which allows the two sets, i.e. 1)
the set intersedion and 2) the set of nodesin aface to be aompared asordered sets. Thus, the
identification of topological relations relies entirely on the standard set operations. The
benefit of this conclusion is that the operations are compatible with the standard SQL
operations select and join, which isa premise for an effortlessimplementation in RDBMS.

The omisgon of arcsin the spatial model does not disturb the reaognition of topological
relations. Two problematic cases concerning inspedion of interiors require more operations.
Both cases regard the relations between lines and surfaces or bodies. The intersedion
between the two interiors might be "empty" of nodes. Additional tests have to e completed
to insped whether the link between two nodes of the lineis exactly indde the interior of the
surfaceor the body.

The maintenance of less CnsO exhibits advantages in several ways. The topological
primitives have to be presented only as ts of nodes (for operations between points, lines,
surfaces and balies) and sets of faces (bodies) and combinations of them (surfaces and
bodies). The intersedions between the objeds are interpreted as a set of nodes or a set of
faces. The operations needed for manipulations of objects are only node and face operations.
The maintenance of arcs will require a presentation of the topological primitives by nodes,
arcs and faces. In many cases, it is hard to predict the dimension of the intersedion between
two objeds, which may neal a test of al the nstructive objects. The test for arcs is
advantageous for the exceptiona cases mentioned above and disadvantageous for the
remaining anes. Hence if the exceptions are more than the regular cases, some dficiency
can be epeded in the identification of body and surface relations (i.e. the test could be
completed by faces and arcs). Operations with lines always require node operations due to
the disconneded boundary of the line. This means that the topological primitives have to be
expressd by the three onstructive objects. This aready means an increase in the number of
operations, to significantly more that the required for resolving the anbiguous combinations
of interiors without nodes. Therefore, we eped better performance in the ompletion of
gpatial analysis from SSM than from a spatial model maintaining arcs. Chapter 7, Case study
3 presentsa omparison between 3D FDS and SSM that proves the expedation for the group
of spatial queries implemented.

Our study considers only simple ohjects. To model and analyse the red world, however,
simple objects may not be sufficient. For example, a wall of a building with windows or a
rodf of a building with a complex facet construction may neel to be represented as surfaces
with holes. SSM requires uch surfaces to be defined as complex objeds (see Chapter 5). The
binary relations between complex oljeds require further investigations in threediredions: 1)
definitions of rules to compose complex objects, 2) definitions of the topological primitives
and 3) derivations of binary relations between complex 3D objects. Some of these isales are
already discus=d in the literature. Medhanisms to identify binary topological relations
between surfaces with holesin 2D space ae reported by Egenhofer et al 1994. Hornsby and
Egenhofer 1998 explore some operations on composite objeds with resped to the different
rules they are created. Egenhofer 1994 and Gapp 1994 present a formaian to derive
knowledge about the compositi on of two hinary relations over a ammon oljed.
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