
173

� � � � � � � �� � � � � � � �

� 	
 � �� 	
 � � 	 	 � � � � � � � � � �
 � �� � � �
 � � � � � �� � � �
 � �
 � � � � � �� � � � 	 � � �	 � � � � � � �
� �� � � � � � � �� � � �

This chapter is devoted to the implementation of the concepts discussed in the previous
chapters, i.e. approach for visualisation and interaction over the Web presented in Chapter 4
and the Simpli fied Spatial Schema elaborated in Chapter 7. The geometric description of
spatial objects in SSS is based on the Spatial Simplified Model introduced in Chapter 5. SSM
was defined under the hypothesis that an omission of the 1D simplex (i.e. arc) will preserve
the capacity of the spatial model to perform 3D topological relationships and wil l improve its
performance. Chapter 6 has already demonstrated that the topological relations differentiated
on the basis of the 9-intersention model are full y supported by the SSM, i.e. the omission of
arcs does not violate its potential for spatial analysis. This chapter focuses on a verification of
the performance. A better performance of SSS (concerning database size and time) will prove
the validity of our hypothesis. For this purpose, our approach for query and visualisation is
reali sed in a prototype system. Experimental GUI interface is developed both 1) to
demonstrate the concept for 3D visualisation of spatial analysis on the Web and 2) to allow
testing of the performance. The applicability of the concept for a dynamic creation of LOD is
tested by investigations of different methods to group objects in 3D R-tree.

The chapter is organised in four parts, i.e. a description of the prototype system and three
case studies. It starts with a short overview of the components used for the client/server
implementation, i.e. Web server, DBMS, Web and VR browsers, Perl language, and
motivates the selection made. Case study 1 discusses the GUI and several examples of basic
semantic and spatial queries and the corresponding visualisation of results. Case study 2
discusses the building of the 3D R-tree. Case study 3 discusses the selected representative
queries used to evaluate the performance of SSS. The experiments are performed on the two
test sites discussed in Chapter 7. A final discussion of the results obtained concludes this
thesis.

8.1 Prototype system
The components of the proposed system architecture (recall Chapter 4, Figure 4-7) are a Web
server, RDBMS and language for CGI scripting (on the server site), VR and Web browsers
(on the client site) and corresponding hardware. The components were selected in accordance
to the fundamental consideration for a low-cost and easy-to-implementation solution. In
general, proof-of-concept system architecture inquires minimal investments and a possible
reali sation in a relatively short time. A more pragmatic aspect – the low-cost components wil l
be of practical benefit for the intended application of the system architecture, i.e. municipal
activities and service. Therefore the study and selection of components was limited to the
software and hardware currently available in ITC, freeware modules and evaluation versions

174

of commercial software. A short overview of the important features motivating the choice is
presented below.

Apache is the Web server selected for the prototype system. The Apache server is a freely
available server written by a non-profit team of developers, i.e. the Apache software
foundation (see Apache 1999). Off iciall y released as Apache in April 1995, the daemon was
already the most popular one on the Web based on HTTP protocol. Since that time, it has
gained a lot of popularity with its stable work, many advanced features and a relatively easy
set-up (see Stein 1997). Apache works under many operation systems (Windows, UNIX,
Linux) on different hardware platforms (i.e. microcomputers and workstations). The
requirements for available disk space (1.5Mb), processor (486DX) and memory (16Mb
RAM) are moderate. The server has already been in use quite a long time and most of the
software problems have already been resolved. All these considerations motivated the
election of the Apache server. Some alternatives are the commercial Web servers WebSite
(see O'Reil ly and Associates 1999), WebSTAR (see StarNine 1999) and Microsoft®SiteServer
(see Microsoft 1999). WebSite runs under Windows operation system (Windows95 and
WindowsNT). Some initial experiments were carried out within the one-month evaluation
period provided by the demonstration version. The server has quite similar features to
Apache. WebSTAR is a Web server for Machintosh. Microsoft®SiteServer runs only under
WindowsNT with the suite of Microsoft products, e.g. Visual C++ and Microsoft Foundation
Classes (MFC), Java++, Microsoft SQL server, ODBS, etc.

MySQL is a client/server relational database management system implementing SQL.
MySQL consists of a server and client programs and libraries. The freeware server was
launched for the first time in 1996, with the intention of dealing with very large databases,
which no vendor can provide. The developers (see TcX, DataKonsultAB, 1999) provide
numbers of manageable tables and records, which are compatible with about 100 Gb data.
Despite some limited functionalit y (hosted SELECTs and view are still missing), the
database system is widely used for a variety of applications. It is available for almost all
kinds of hardware platforms and operation systems. A variety of Application Programming
Interfaces (API) in different languages (C, C++, Perl, Python, Java, TCL) are freely available
on the Web. Other attractive features are: a very fast JOIN operation, the possibilit y to access
tables from different databases in the same query, a very fast B-tree indexing based on disk
tables and compression, etc. Some benchmarks have showed significantly better speed
performance compared with other DBMS (mSQL, PostgreSQL, Microsoft Access, Oracle).
The database does not provide a GUI, e.g. “query by example” , which, however, was not
needed for the system architecture. Another freeware DBMS are mSQL (see Hughes
Technologies 1999 and PostgreSQL (see PostgreSQL, Inc. 1999). MSQL is a very light
database system designed to provide fast access to small data sets. Since interest in the
database is increasing, the last release promises an enhanced functionality. PostgreSQL is an
object-oriented (OO) RDBMS.

It supports SQL3 and provides extended OO possibiliti es to define types and classes. The
database system is available for Unix-like operation systems. At the time of development of
our prototype system, the performance of PostgeSQL (Postgres95) was worse than MySQL
and the availabil ity of APIs was rather limited. These features are considerably improved in
the new releases, which makes PostgreSQL an option for a DBMS in our approach. Some
initial tests (mostly spatial queries in 3D FDS and SSS) carried out with Microsoft Access

175

have shown rather unsatisfactory performance, which eliminated the RDBMS on a very early
stage.

Perl was the language used in our system to write CGI scripts. In general, CGI scripts can
be created in any programming language (C, C++, Python, Java, TCL, Pascal, Delphi). The
compiled languages such as C and Pascal gain in speed in the case of computational
operations. The interpreter languages (Perl, Python, TCL), are more suitable when command-
line-based operations have to be performed. A typical example of such operations is the
submission of SQL queries to a database. Developed originall y as a Unix language, Perl is
now available for most of the computer platforms and can be freely downloaded from
Comprehensive Perl Archive Network (see CPAN 1999). Another crucial feature of the
language is the large number of freeware CGI scripts, libraries and APIs, which, further
extended, save a lot of programming effort. Two of them, i.e. CGI.pm and DBI.pm to create
fill -out forms and access MySQL database, were used for the implementation of the system.
More information about them can be found in Bunce 1999, Stein 1998 and Wiedmann 1998.

The Web server and the RDBMS were installed under LINUX on Pentuim 133 MHz, 96
Mb RAM. The tests were conducted from a client station equipped with the Web browser
Netscape (see Netscape Communication Corporation 1999) and the VR plug-in Cosmo
player, running under Windows 95. The user on the client site can use any other Web
browser supporting frames, e.g. Microsoft Explorer, and any VR browser (supporting
VRML2.0), which has a plug-in version for the selected Web browser (see Web3D
Consortium, 1999)

In general, different suites of components can be realised under the condition of a low-
cost system. Some examples are li sted below. The current configuration, i.e. Apache,
MySQL and Perl, can be installed under Windows 95/NT or any other UNIX operation
system. Apache server and Perl language can be combined with mSQL (for small data sets).
Apache server, PostgreSQL and Python scripting language are yet another possible
configuration for UNIX (LINUX) operations systems. API written in Python to access
PostgreSQL is already available. This configuration premises the abil ity to compose complex
object types at database level and perform extended SQL queries, features which may
facilit ate and simpli fy the CGI scripting. In principle, Apache server can be integrated with
Microsoft Access DBMS, but the scripting language has to be changed to C or Pascal
(Delphi). Ingredients for our system architecture can be selected from among commerciall y
available systems as well . Practically any DBMS (Oracle, Informix, SyBase, DB2, etc.) can
be employed for a data warehouse. The scripting language in most of the cases has to be C or
Pascal.

The hardware configuration selected as a server is moderate. The understanding was that
an acceptable performance on such equipment with test data would be a premise for a good
performance on a better hardware configuration with larger data sets.

The prototype system is used to verify three concepts proposed in this thesis. First, it has
to demonstrate that the approach for access and visualisation of 3D GIS data is feasible. The
ways to specify queries and explore results, discussed in Chapter 4, are illustrated by an
experimental GUI elaborated in Case study 1. Second, the prototype system has to provide
evidence of an improved performance of SSS. A set of representative queries on two data sets
are used as an indicator. The type of the queries and the approach to testing the results are
explained in Case study 3. Finally, the prototype system has to validate the R-tree indexing in
two of its aspects: 1) the spatial grouping of objects is appropriate for dynamic creation of

176

LOD and 2) the code introduced in Chapter 7 is eff icient. For this purpose, an algorithm for
the R-tree construction, applying different constraints, is presented in Case study 2. The
effect of R-tree codes with respect to the asseveration of the database traverse is then
discussed in Case study 3.

All the tests are performed on the two experimental sites created in the Chapter 7. The
first test site, i.e. the central part of Enschede, contains photo-textured buildings and terrain,
trees, lampposts, streets and parking lots. The model is relatively small but contains most of
the relational tables according to SSS. The second test site, i.e. Vienna, consists of only
buildings. The test site is simpler in terms of a variety of objects and object components (only
the BODY_G, BODY_T and BODY_A are created); however, the number of objects is quite
high. The first data set was used mostly to illustrate the GUI and suggested manner to
compose queries, extract data and perform results. The second one was employed in regard to
speed performance of the system. The case study on dynamic LOD creation presents
examples from both data sets.

8.2 Case study 1: GUI for query and visualisation
The GUI presented is organised in framed HTML documents in maximum two windows.
According to our approach, the HTML documents are intended for the formulation of queries
(typing or selecting parameters) and to display information (text, raster, movie, sound, etc.).
Basicall y, the Web browser can visualise every file format that has defined MIME format
and corresponding plug-in or helper applications assigned to it (and is available on the client
site). The li st of standard formats is already quite long and can be additionally extended (see
Stein 1997). The VRML document is used to provide a graphical display of 3D spatial
analysis and to facil itate the identification (by visual observation) and selection of objects to
query. Here, we ill ustrate four of the steps presented in Chapter 4, i.e. query, data
visualisation, data modification and local query (see also Zlatanova 1999a, 1999b). The first
step, i.e. user identification and database selection is of a minor significance for the
evaluation of system functionality and therefore is not implemented.

8.2.1 Data query
The development of GUI was guided by the investigations into user requirements. Chapter 3
has already discussed the variety of users approaching the municipal 3D GIS and their
probably different experience with GIS. In this respect, the GUI has to allow an easy,
intuiti ve way to query a broad spectrum of spatial and semantic information (see also
Coomans et al 1997). Therefore, we have experimented with three conceptually different
approaches to requesting for information: multiple-choice, one-line SQL queries, formulation
of complex queries. The multiple-choice forms offer a very simple way to obtain information
about certain objects. The limited choice is the only disadvantage. We suggest these forms be
used only for query of information per object. Then the menu may contain all the items of
interest per object. Example 1 discusses the steps to obtain information and the layout of the
form.
Quali fied users are allowed to send SQL statements to the database. The SQL statement is
specified in an HTML fill -out form. The result of the query is displayed either in an HTML
or in a VRML document. Several SQL forms treating different situations, i.e. “ free SQL
query” , “SELECT”, “SELECT+ visualise ” are designed and tested. The free SQL form is the

177

simplest one: a two-section frame gives the user the possibilit y to type an SQL query and
look at the result in the second part. In fact, the Web browser acts a standard line interface of
the DBMS. Currently, the form works only with text information (see Figure 8-1). In general,
most of the SQL command can be "dressed" with a GUI based on HTML fill -out forms.
Depending on the desired SQL statement, the layout may vary. For example, the form
"SELECT" offers a separate text field for each key word (i.e. select, from, where, order by)
of the statement. Example 2 explains the forms in detail.

The forms mentioned above allow query of spatial and semantic information of objects
that can be expressed by one SQL statement or selected by a multiple choice menu. A large
number of queries are more complex and need a host language to process the result of series
of SQL statements (see Chapter 2). We have developed several specialised HTML fill -out
forms to illustrate the way we resolve these cases, i.e. Examples 3 and 4. We group and offer
all the speciali sed forms to the user in an individual HTML document (see Figure 8-2).

� � � � � � ! " # � � � � $ % & ' � � � (� � � � � � !) # $ * � + � , - � . � / 0 1 2 & 3 4 � 5 .

Example 1: Query of spatial and attribute information per object (pull-down menus)
The example presents a way to extract information about a particular object, i.e. the user
visually decides which object to query inside the VRML document. The user has at his
disposal a two-section frame. One of the sections displays the VRML document and the other
can be used for instructions. The VRML document is created in such a way to provide point-
and-cli ck operation. In the snapshot (see Figure 8-3), the building closer to the viewer is
"equipped" with a VRML sensor and thus available for pointing. A click with the mouse on
the building activates a CGI script, which deli vers the Query-Result sections to the client
station.

In the Query section a pull-down menu offers several options: co-ordinates of the
building, image file used for texturing the walls of the building (in this example one image
file is used for all the four textured walls), a VRML containing only the building, and the
interior of the building. The choice made in the first Query section has to be sent to the server
by pressing the Submit button. The CGI script processes the form and creates a new HTML
document. The snapshot represents the case when the interior of the building is selected.
Since the interior is kept as a panoramic movie, the newly created HTNL contains the name
and the location of the file. The browser displays the deli vered HTML document in the Result

178

section of the frame. This option needs the SmoothMovie plug-in for visualisation. The
snapshot of the screen is made at the final stage, i.e. the interior of the building is selected,
the HTML document has arrived and the panoramic movie plug-in is activated. This example
is the reali sation of the two-step query discussed in Chapter 4. The first step is identification
of the building and the second step is selection of the information. The query in this example
is restricted to the several options in the pull-down menu. The choice, however, can be
further extended by activation of a CGI script to deli ver an SQL form with larger possibiliti es
for query.

Query section

Submit button

A click on the building
activates a CGI script

Pull-down menu:
coordinates, texture,
VRML f ile , interrior

Result section
interior

6 7 8 9 : ; < = > ? @ 9 ; : A B C D E F G 7 F H F I J D ; K F I G 7 L 7 I C B : K F G 7 B I F M B 9 G F I B M N ; L G
Note that in the example the reference between the VRML object (a node in the VRML

document) and the ID of the corresponding object in the database is already establi shed. The
ID recognition of the objects, however, has to be completed prior to the stage described in the
example. Recall Chapter 4, that either each object (resp. node in VRML) has to have its own
CGI script (with known ID) suitable for user request, or only those selected by the user.
Bearing in mind the large number of CGI scripts in the first case, we give preferences to the
second option. Unfortunately, CGI scripts do not have access to VRML nodes, cannot control
their status and thus no information about the actual ID of the object is provided. This
information has to be given by the user. We suggest a method of organisation by an
intermediate VRML document, where the user wil l pick up the ID of the objects by using the
extended TouchSensor, described as a new PROTO node (see Chapter 4). In practice, an
event “mouse-over-object” activates an ECMAscript, which visualises the ID and an event
“mouse-cli ck-on-object” activates a CGI script, which delivers an HTML fill -out form where
the user can type the ID observed. Another CGI script creates dynamically the HTML frame

179

and the VRML document described in the example above. The VRML document already
contains a reference between ID and nodes for all the objects pointed by the user.

Example 2: SQL queries: "SELECT" and "SELECT+visualise"
The primary interest in this research is the visualisation of 3D spatial queries. "Translated" to
our approach, this means that the CGI script not only retrieves the data from the database but
also represents the result in a VRML document in an appropriate way for the user. As
discussed in Chapters 4 and 5, the syntax of the VRML requires a geometric description
different that maintained by the conceptual model. Therefore, the SQL statement has to
ensure suff icient data for VRML creation and eff icient ordering of faces. The data and the
order required are displayed in the fil l-out form. The interface is based on a two-section
framed HTML document. The left part is reserved for typing SELECT statements and right
part is used to display either HTML or VRML documents. The form correctly fill ed is sent to
the server and a HTML document is assembled as a first document (on the left side of the
frame). On the basis of the result obtained, the user decides whether to continue with VRML
creation. The intermediate step is included basicall y to provide greater freedom on the result.
It can be avoided with a control over 1) the fields in the form and 2) the data extracted from
the RDBMS. Such control, however, wil l restrict the functionalit y of the form to only VRML
documents. Figure 8-4 shows a snapshot of the Web browser after VRML visualisation.

Required SQL syntax

VRML document

Submit button 1

Fields for SQL
statements

O P Q R S T U V W X Y Z [\ R T S P T] X Y ^ [^ _ ` a b c d P] R a e P] T
The free access to the database provides a mechanism to specify and display a wide range

of spatial queries. Each request in the spatial domain (formulated by spatial or non-spatial
restrictions) which can be described in one SELECT statement can also be visualised in a
VRML document. Examples of such queries are “which is the highest building?” , “show the
buildings in a particular area”, “show all the streets”, “show all the administrative buildings” .

180

The same mechanism can be used to create DELETE, UPDATE, and INSERT forms to edit
data.

Example 3: Common faces
This example illustrates retrieval of neighbourhood relationships, i.e. “common nodes” and
“common faces” . In the form, the user has to clarify the objects that have to be inspected, i.e.
the user has to be aware of the objects' ID. As discussed above, the ID can be provided with a
VRML document. An option to analyse the relationship between two objects is offered as
well . An asterisk, instead of ID, extends the search among all the objects in the database.
Figure 8-5 is a snapshot of the query "show all the common walls". The fields for ID are
fill ed-in with asterisks. The right section of the frame displays the two bodies obtained. The
invisible face between them is the common face. Since the query cannot be completed on the
basis of SQL queries, the programming language used for CGI scripting (in our case Perl)
acts as a host language.

Result of the query

ID second object

ID f irst o ject

f g h i j k l m n o p q k r g s t g u k v w i k j g k u o r x y y x z { s r k u
Example 4: Visibil ity check
The last example demonstrates facil itation and simpli fication complex analysis by an
appropriate 3D visualisation. The field of vision (or line of vision) is important information
for telecommunication, geodetic, military applications, etc. For example, a mobile telephone
company could be interest in verification of the actual position of a transmitter. This can be
translated to a query "check the visibilit y between the position of the transmitter and the roof
of that building" or "show the range of the transmitter". To require such information, several
ways of specifying the query a possible: 1) co-ordinates of begin and end points of the line of
vision, 2) ID of the two points or 3) one point and the range of view (represented as e.g. cone
of view). In our example, we consider the case when the two co-ordinates are to be input.
The outcome of the query must be a set of objects, which disturb the view. Theoretically, this

181

query requires complex 3D intersection algorithms between the line of vision and the faces
forming the objects in the range of the line. Here, we present a simple solution based on a
visual inspection of the actual path of a traversing line between the two points. The line of
vision is drawn in the VRML world and the user can observe the points of disturbance. A
form to illustrate the idea is shown on Figure 8-6. The user has to type the co-ordinates of
two points and as a result she/he gets a VRML document with a subset of the model
surrounding the points of interest. A line through the points traverses the direction. In the VR
browser, the user can navigate around the disturbing object, inspect and evaluate the
situation. Appropriate sensors (extended Touchsensor presented in Chapter 4) attached to the
objects provide identification information, e.g. the ID of the objects or the name of the owner
(company or private person).

Field to import coordinates

Points of visibility
disturbance

First point

Second point

Traversing line

| } ~ � � � � � � � � � � � } � � } � � � � � � � } � � � � } � } � } � } � � � � � � � � �

8.2.2 Data visualisation
The visualisation of spatial data and more specificall y results of 3D spatial analysis in our
approach has three aspects: 1) geometric representation, i.e. objects vs. parts of objects, 2)
components of the scene and 3) means for further exploration.

In this thesis, we assume that objects with a complete set of CnsO will be visualised on
the screen. For example, the result of the spatial query "show the walls of buildings, which
touch this street", will be represented by the street and surrounding buildings (the walls might
be highlighted or not) instead of the street and the adjacent walls. Since we provide the user
with the possibilit y to navigate inside the world, we consider the supply of "shape realism"
compulsory. All the examples of VRML worlds given in the thesis are under the assumption
of complete geometric representation of objects on the screen.

Different approaches to compose a scene in a VRML document can be implemented. The
simplest way to get fast results on the screen is the visualisation only of the objects elected by

182

the query displayed in shading mode (see Chapter 2). Some of the queries described above
are examples of this approach (Examples 2,3,4). However, very often the view with the
objects is very limited and does not provide information about the surroundings. A part of the
town (neighbourhood, several streets with buildings along them) commonly has to be
included in the VRML document to facil itate the orientation. Techniques such as different
pre-defined views, highlighting, blinking, guiding animation or selective texturing can be
applied to focus the attention. The objectives of the thesis do not include detailed
investigation into the problem. Figure 8-7 gives examples of a highlighted street and guided
animation. The "car" (a small red parallelepiped in Figure 8-7b) brings the user to the
building selected by a query. The part of the VRML document containing the VRML nodes
controlling the animated car is given in Appendix 4. More examples on focusing the attention
by applying VRML techniques can be found in Ogao 1997.

Since the enhanced techniques to display spatial queries and attract the attention require
extra VRML nodes, they have to be used with attention. To our experience, the user has to be
prompted to request for specific way for visualisation. For example, before the actual
composition of the VRML document, the user can be asked to select between objects for
visualisation. Such approach is followed in Example 4, i.e. prior the VRML design the user
may choose whether to have DTM and grid of co-ordinates visualised. Figure 8-6 is an
example of grid selection.

� � � � ¡ � � ¡ � ¢ � � � £ ¡
¤ � � � � ¥ ¦ § ¨ © � � � � � � � � � £ ¡ £ ª � « � � � � � � ¡ � � ¬ � � �

8.2.3 Data modification
Changes at database level can be executed either by the "free SQL" form presented earlier or
by development of forms similar to "SELECT+visualise". Both ways, however, require the
user to be skill ed in typing SQL queries. Since this is not always the case, we have developed
an alternative approach based on multiple choice and specific fields to import new values.

183

Section for values

Display of old values

VRML with results

Import of new values

Submit button 2

Submit button1

A click on the building
activates a CGI script

Optional changes

Change section

 ® ¯ ° ± ² ³ ´ ³ µ ¶ · ® ¸ ® ¹ ¯ º » ´ » ± · ® ¹ ¼ ¸ ² ½ ¾ » ± ¸ ² ¿ ¸ ° ± ² À ¼ Á Á ® ¹ ¯ » ¾ ¼ Â ° ® Ã · ® ¹ ¯
Example 5: Modification of information
The example form suggests a method of edit operation at database level. Here, the
dynamically created VRML document is used for verification. Again the initial VRML
document has to be equipped with the necessary sensors to detect user actions on a particular
object. A cli ck on an object activates a CGI script, which provides two sections: a Change
section where the optional changes are li sted and a Values section to display the old values
and introduce new ones. Currently, the form offers three options: change of co-ordinates of
points, change the name of the image file used for texturing and change of the texture co-
ordinates. The snapshot given in Figure 8-8 shows "change of texture co-ordinates". The
operation is relevant for users who want to experience, e.g. a new façade of a building. They
will need to have the name of the image with the new façade and a mechanism to reference
points from the image to the real co-ordinates of the geometry of the building. The steps
necessary to match texture onto the faces are li sted to the left side of the snapshot (see Figure
8-8). A submission of the type of the operation (i.e. change texture co-ordinates) activates a
search in the database for the old image co-ordinates. An HTML document with co-ordinates
and field to type new ones is deli vered in the section Values. In this section, the user has to
type the new co-ordinates. The submission of the new values to the server will modify co-
ordinates in the corresponding database fields and will create a VRML document for
verification (i.e. VRML with results). The texture can be adjusted after several repetitions of
the operation. The way to edit co-ordinates (see Figure 8-9) or change the name of the image
files for texturing (see Figure 8-10) is identical to the one described for textures.

184

8.2.4 Data exploration and manipulation
The local query refers to operations, which are already coded in the VRML document but the
user has to activate them (see Chapter 4). To demonstrate such operations, we assume that
one building has several textures stored in the database and the user needs to compare them.
Then they can be included in one VRML document but only one of them can be visible at a
time. We have assembled certain VRML nodes, which provide the user with means to switch
them. The second textured building in the last example has a sensor attached to it (see Figure
8-8). A cli ck on the building wil l result in replacement of the façade of the building, i.e. the
image file used for texturing wil l be replaced with a new one. The difference with the
previous example is that no connection to the server is made. The specific VRML nodes
(sensors, routes and ECMAscript) link the "switch-on-cli ck" operation to a script, which
sequentially changes the images at every cli cking on the building.

Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Å Ð Å Ñ Æ Ò Ó Ô Ò Ë Ò È Ï Å Ñ Õ Ð É Ö Ä Å Æ Ç È É Ê Ë × Ø Í Î Ï Å Ð Å Ñ Æ Ò Ó Ð Ù É Å Ú Õ Æ É Ó Å Û É Ó Ò È
Ð É Ü Ð Ç È Å Ñ Æ

It must be clear that the complete functional GUI is a responsible task requiring further
investigations. Here, we have demonstrated that the query, retrieval and visualisation of data
are feasible within the system architecture proposed. Functional GUI wil l be achieved by
appropriate selection and structuring of the approaches presented here. The issue is related to
the user identification and database security. The operations that wil l be provided to different
categories of users have to be first clarified and then the approach for query, editing and
visualisation has to be clarified. For example, the GUI for end users (see Chapter 3) might be
appropriate to be based on pull -down menus (Examples 1 and 5) and a number of forms
similar to "SELECT+visualise" and "common nodes" to perform SQL operations. The GUI
for consumers must allow greater access to the database, therefore preference has to be given
to the SQL forms. The municipality (being a consumer) needs strict determination between
the clients of its 3D GIS. For example, the civil ians might be granted the lowest level of
assess to the system, which means that several standard pull-down menus for query will be
sufficient.

185

8.3 Case study 2: Dynamic creation of LOD
This case study is devoted to the investigation of algorithms to group the objects in 3D R-tree
structure. The issue has two specific aspects, which need elaboration. First, the intended R-
tree is three-dimensional and most of the algorithms focus on 2D cases. Second, with respect
to the logical design, our 3D R-tree is introduced for spatial indexing and dynamic creation of
LOD (see Chapter 7). As discussed in Chapter 4, the VR browser is capable of dealing with
different LOD, i.e. the VR browser chooses the needed LOD and decides on the moment of
switch. The LOD, however, have to be available in the VRML document. We have selected a
creation of LOD based on an on-fly extraction of data from the MBB of an R-tree. This is to
say that some of the MBB of the R-tree will be visualised on the screen, replacing the object's
detailed geometric description. The case study investigates and selects a method for a 3D R-
tree construction, which provides MBB appropriate for LOD.

8.3.1 3D R-tree creation
The critical issue in the R-tree creation is the consolidation of objects in a leaf. The
algorithms to build the classical R-tree and its modifications (e.g. R+) are based on 2D
subdivision of the space with respect of the shape of the objects. Kofler 1998, investigates the
only R-tree based on 3D boxes instead of triangles. Despite the third dimension, the grouping
of the objects is based on a predefined subdivision of 2D space. A 2D rectangular mesh with
constant width controls the grouping. One R-tree leaf contains the objects that fall in a
particular patch of the mesh. Moreover, all the objects of which the upper left corner of their
2D projection fall s in the same rectangle are grouped in one R-tree leaf. If the object does not
fall completely in the rectangle, an enlargement of the bonding box is done to comprise the
object. The minimal width of the mesh is calculated on the basis of the average object size.
The method allows the construction of a very well balanced R-tree in 2D space.

The criterion to group several objects in a leaf is usually not influenced by the third
dimension when the R-tree is utili sed for spatial indexing. In our case, however, certain
MMB are part of the scene. They will appear behind the detailed objects and will participate
in the formation of the town's silhouette. Small houses and buildings in general wil l have no
impact. The high ones, however, are most likely to be visible. Being a part of the R-tree leaf,
the building may be grouped with other buildings in a significant distance from each other.
Thus the MBB for these leaves will have the height of the highest building and foundations
covering a large area, e.g. one neighbourhood. The MBB displayed later as LOD wil l create a
misleading perception of a group of high buildings in the neighbourhood.

In our approach, we investigate the impact of an object's height on the shape and size of
the R-tree boxes. The intention is to group the nearest objects and preserve (as much as
possible) the structure of the town until certain levels of the R-tree. For example, the parent
boxes of the R-tree containing high buildings have to remain the highest box and have to be
relatively situated at same location. Respectively, it has to be possible to indicate the areas
with low density of houses. R-tree boxes created under such considerations can be used to
select geometric descriptions for LOD.

186

1) N=2, Dh 2) N=2, Di 3) N=2, A

5) N=3, Di 6) N=3, A4) N=3, Dh

7) N=4, Dh

10) N=5, Dh

8) N=4, Di 9) N=4, A

11) N=5, Di 12) N=5, A

Ý Þ ß à á â ã ä å å æ ç è è é ê é ë ì â í î ï æ ð Þ ê ê â á â ñ î í á Þ î â á Þ ò ê é á ß á é à ó Þ ñ ß
The MBB of objects is based on the traditional approximation of MBB, i.e. its faces are

parallel to the x, y, z axis planes. The incorporation of an object in a node, investigated here,
is based on two parameters, i.e. the number of R-tree entrances and the distance (or angle)
between the objects at first step and the MBB afterwards. Three approaches to group objects
were investigated: 1) horizontal distance, 2) inclined distance and 3) minimum-maximum
angles between the mass centres of the objects (MBB). First and second approaches select the
N-closest (N is the number of the R-tree entrances) objects among all the objects, according
to respectively, the horizontal and inclined distance between mass centres. A threshold
prevents incorporation of distant objects. The third algorithm selects the objects according to
the height of the MBBs, i.e. two object are assigned to one parent node if the angle between
the mass centres fall s in a given threshold. These three approaches for grouping were tested
with the Enschede data set. The results are presented in Figure 8-11. The different cases are
snapshots of the MBB visualised in VRML documents. The orientation of the objects in all
the snapshots is approximately the same in order to facil itate the comparison. Thus the two

187

MBB representing the highest buildings 1 and 2 (see Figure 8-12) in the site are always at the
top of the snapshot (bordered by a circle in Figure 8-11 1).

The number of objects per R-tree node (i.e. entrance N) varies from 2 to 5. The thresholds
used were Dh,Di=150m for distance and 45<Di<75 degree for angle. The first column with
snapshots (Figure 8-11 cases 1,4,7,10) presents the results when the criterion is the horizontal
distance (Dh). The second column (Figure 8-11 cases 2,5,8,11) presents the results when the
criterion is the inclined distance (Di) and the third column shows the results applying the
angle criterion (A). Figure 8-12 is a snapshot of the Enschede test site with implemented
MBB of objects for one of the LOD.

1

3
4

5
6

2

ô õ ö ÷ ø ù ú û ü ý þ ÿ � � � � ù � ù þ � � � � � ù 	
 � � � � � � � ø õ ö �
 �

The snapshots are a good illustration of the effects of the three approaches. It is obvious
that the number of entrances per R-tree node has the major influence. Two entries per node
preserve almost completely the mutual distribution of objects, but result in a large R-tree (see
Table 8-1). Five entrances per R-tree node may cause misguiding effects and are
consequently not to be recommended. For example, the group of two high buildings (1,2 in
Figure 8-12) is not recognisable anymore in cases 9) to 12). The street (4 in Figure 8-12) wil l
be replaced with a high, large box, as if several buildings are there instead (10,11,12 in
Figure 8-11). The box over the street (4 in Figure 8-12) in cases 11 and 12 is even higher one.
The best grouping for this data set can be observed with three and four entries per R-tree
node (cases 4,5,6,7,8 in Figure 8-11). This number of entries still exhibits the major structure
of the town.

Variations on the basis of the distance/angle criterion are less apparent. The case 9) N=4,
A indicates that the usage of only the angle criterion may lead to very large box composites.
In general, large boxes cause considerable overlapping, which often slows down traverse of
the R-tree.

The cases 4) N=3, Dh, 7) N=4, Dh and 8) N=4, Di shift the group centre of the highest
buildings (1,2 in Figure 8-12) to the right. A comparison between cases 7) and 8) gives some
advantages to 8) because the block of boxes in 7) creates the impression of a more complex
structure than two parallel buildings. The cases 5) N=3, Di and 6) N=3, A are almost

188

identical and give the best generali sation of the object distribution: 1) a group of high
buildings in the upper corner, and 2) two lower building complexes in the right and left
bottom corners. The boxes are relatively balanced and compact. On the basis of these
considerations, we adopt the approach with the number of entrances three and inclined
distance.

1) real objects 2) MBB, level 7

3) R-tree, level 6 4) R-tree, level 5

5) R-tree, level 4 6) R-tree, level 3

� � � � � � � � � � � � � � � � � � � ! " ! # $ � % & ' � � () � & � � � � ! � � * � � + � '

Table 8-1 shows the number of faces needed for visualisation with respect to different R-
tree representations. The MBB created applying two distance approaches are the same, and
therefore, no separation is made. The height of the R-tree for the Enschede data set is three.
The results presented in the table refer to the first non-leaf level of the R-tree.

, � # * � � � � � - � ' % . � (� �) � & � � � ' � / � % ! 0 1 � � � ' ! �

Number
of boxes

Number
of faces

Number of faces
Including terrain

Original objects 29 249 1533
MBB of objects 29 174 180
R-tree, N=2, distance 15 90 96
R-tree, N=3, distance 10 60 66

189

R-tree, N=4, distance 8 48 54
R-tree, N=5, distance 6 36 40
R-tree, N=3, angles 12 72 -
R-tree, N=4, angles 10 60 -
R-tree, N=5, angles 9 54 -

The selected R-tree configuration was verified on a larger data set (Vienna, 1600 objects).
The height of the resulting R-tree is seven. Figure 8-13 presents snapshots of five R-tree
levels. The red circle focuses attention on the highest building in the town (real objects),
which remains the highest box in exactly the same corner of the town as the proportion
(width-building/width-town) is preserved. The area surrounded by a yellow box has low
building density,which is preserved until level four (cases 1,2,3,4). Table 8-2 contains the
number of MBB and corresponding faces for the Vienna data set.

2 3 4 5 6 7 8 9 : ; < 6 = = 3 > ? 8 @ A 6 6 5 6 B 6 5 C > D E F

Objects/r-tree levels Number
of boxes

Number
of faces

Objects/r-tree levels Number
of boxes

Number
of faces

Objects 1600 18578 4 60 360
7 (MBB) 1600 9600 3 20 120
6 534 3204 2 7 48
5 178 1068 1 3 18

Although the results are promising, the approach needs further investigations and tests.
The algorithms were tested only for a single threshold. In the third approach (based on
angles), the distance between the objects was not considered. We expect better grouping
when a combined (distance+angle) approach is applied. The three algorithms (and eventual
extensions) need a comparison with existing methods, e.g. the classical R-tree algorithm or
the algorithm used by Kofler 1998. Nor is the time performance of the algorithms evaluated.
Issues related to the maintenance of the tree, i.e. operations delete, insert, update, search, are
not treated. The research interest was limited to objects grouping appropriate for LOD and it
was completed.

8.3.2 Organisation of LOD
The organisation of LOD requires the consideration of several factors. LOD are relevant for
large data sets. Therefore, first it has to be decided whether and which VRML documents
need LOD. Several small VRML worlds linked together by sensors and inline nodes may
create the same effect. Second, the usage of texture has to be evaluated as well . The
navigation through a VRML world without textures is much faster. Third, it should not be
forgotten that the LOD has to be included in the VRML document. This reflects the time for
deli very to the client station and the time that the VR browser needs for parsing. Table 8-1
and Table 8-2 contain the number of faces that has to be added to the VRML document, in
addition to the detailed description. The fourth consideration focuses on the moment of
switch between the LOD. The compromise between reali sm and fast navigation should be
resolved. Early replacement of the detailed geometric description with the first LOD usually
disturbs the reali stic view (see Figure 8-12), but minimises the geometry for visualisation and
speeds up navigation.

190

All the factors indicate that every model may have a separate schema of LOD clarifying
which level will contain what geometric description. For example, we have successfully
tested two different schemas for our experimental sites. The Enschede data set has the
following LOD (see Figure 8-12, right): LOD0–detailed geometry plus image texturing;
LOD1–detailed geometry without texture; LOD2–MBB of objects. Since the model was
rather small, the objects are repeated creating three different neighbourhoods. The Vienna
model does not contain textures, therefore the LOD created for the second data set were
different: LOD0–detailed geometry; LOD2–MBB of objects; LOD3–boxes of the R-tree
(level five). Both schemas of LOD (as well as some different) do not require more data than
are available in the database. In this respect, the suggested method to derive LOD from the R-
tree boxes allows a flexible way to design the LOD with respect to the model for
visualisation.

8.3.3 Dynamic creation of LOD
The positi ve results obtained from utilisation of R-three boxes for LOD motivate the next
step, i.e. the dynamic creation within our visualisation approach. The limitation of CGI
scripting, i.e. one dynamically created document per connection, does not leave many
choices. LOD can be created dynamically either in the body of the current document or as
separate documents on the server. The first approach results in very long VRML documents,
which causes transmission and parsing delay. The second approach permits some time
optimisation by simultaneously writing all the necessary documents. However, it creates a lot
of temporary documents on the server, which can be removed only after the user logs out.
Further investigations are necessary to select the appropriate approach.

8.4 Case study 3: Performance
The last case study examines the performance of SSS. The results contribute to the
verification of the model and the overall evaluation of the system architecture. Recall Chapter
5, that SSM was proposed as an alternative to 3D FDS for our system architecture. In this
respect, the definition of SSM and the logical model SSS are conceptually related to 3D FDS.
Therefore, the basic idea of the test is a proof of the improved performance of SSS with
respect to 3D FDS. Two aspects of the performance are investigated here, i.e. size of the
database and speed to complete queries.

The performance test concerning size concentrates on the effect of three major concepts
in SSS: 1) the elimination of arcs and modified representation of some relationships, 2) the
maintenance of R-tree tables and fields for codes and 3) the storage of geometric attributes
and behaviour. While the reduction in the database size due to arc removal can be predicted,
the effect of modified relationships and the storage of additional data is diff icult to evaluate.
This test investigates whether the modified geometric description of SSS provides a suff icient
reduction to compensate for the size of the new included data. If this is the case, the tests wil l
be considered successful, i.e. SSS ensures more eff icient data organisation than 3D FDS.
Section 8.4.1 elaborates the issue.

The performance test concerning speed focuses on the time needed to traverse the
database. The time for VRML creation, deli very and parsing used for comparison in Chapter
5 (see Table 5-6), is of minor interest here. First, the time for database traversal is dependent
on the entire geometric description of objects (CnsO, GO and explicit relations between

191

them), i.e. the issue of interest for this thesis. The other three times are related mostly to the
number and shape of faces (within the same hardware and software equipment). The faces,
however, are kept equal for SSS and 3D FDS (see below) in our experiments. Second, the
two times are correlated, i.e. more faces (obtained from triangulated surfaces) result in a
larger VRML document (i.e. longer deli very time), which, however, needs less time for
parsing. The effect of the number and shape of the faces on the speed for delivery and parsing
requires separate investigations.

Supplementary investigations related to the absolute waiting time on the client station and
possibiliti es for reduction are carried out only for SSS. The operations at database level are
further optimised by utili sing 1) the introduced R-tree codes, and 2) the database-indexing
mechanisms provided by the RDBMS. The aim of the tests is twofold: 1) to evaluate the
efficiency of the R-tree codes and 2) to demonstrate the effect of some standard possibiliti es
for optimisation (i.e. database indexing), which are not expli citly discussed in the thesis. The
performance test regarding time is presented in Section 8.4.2.

To provide sufficient evidence for discussion, two of the data sets (i.e. Enschede and
Vienna) are implemented in the same RDBMS according to both conceptual models. The
logical model, the set of representative queries and the manner of recording and presenting
results are maximally unified to avoid vague and misleading conclusions.

8.4.1 Size performance
The test is based on comparison between the sizes (in bytes) of SSS and 3D FDS of two data
sets. The sizes are computed with respect the components GDsc, GA, GB, T and the data
needed for the R-tree. Compared with 3D FDS, SSS consists of more tables and contains a
larger spectrum of data. In addition to the GDsc and T (maintained in 3D FDS), SSS hosts
data related to GA, i.e. colour of objects, texture, parameters for 3D representation of line
and point objects, GB and R-tree tables. As discussed (see Chapter 5), 3D FDS can also
incorporate such data. Moreover, an R-tree structuring similar to SSS could be organised for
3D FDS as well . The size of the database will increase exactly with the size of the parameters
of GA and GB and the R-tree tables in SSS. Therefore, these data are not considered for 3D
FDS. The results of size computations are organised in several tables, i.e. from Table 8-5 to
Table 8-9. First, the total size of the two databases is computed (Table 8-5 and Table 8-6),
second the size of the tables corresponding to GDsc+T is given (Table 8-7), and third the size
of the R-tree tables is calculated (Table 8-8). The final comparison is given in Table 8-9. All
the computations are presented for two data sets, i.e. Enschede and Vienna.

The Enschede data set is obtained from the procedure for 3D digitising and object
reconstruction from large-scale aerial photo images (see Chapter 7). As a result of the
procedure, all the buildings have vertical walls, flat or gable roofs. Two of the buildings have
several bodies on top of one other, i.e. their walls do not reach the ground. Several surfaces
(DTM, a number of streets, parking lots), line (traff ic lights, lampposts) and point (trees)
objects are represented in the data set. Some of the roofs and walls are textured with real
photo images.

The Vienna data set is obtained from a point list with the roof outlines. The pre-
processing steps can be found in Kofler 1998. The data set contains only buildings. The
buildings have vertical walls and flat roofs as the height per building is constant. There is no
texture applied to any of the buildings. The number of objects in the tables according to both
conceptual models can be seen in Table 8-3.

192

G H I J K L M N O P Q R I K S T I U K V W X

3D FDS Enschede Vienna SSS Enschede Vienna
- - - Composite object 2 -
Body object 18 1 600 Body object 11 1 600
Surface object 7 - Surface object 19 -
Line object - - Line object - -
Point object 8 - Point object 8 -
Faces 1 533 18 578 Faces 1 533 18 578
Arcs 2 403 25 003 - - -
Nodes 960 30 756 Nodes 960 30 756
Edges 1 533 92 268 - - -

The type of the objects in both models differs for Enschede due to the new data type
composite object introduced in SSS and different representation of some of the bodies in 3D
FDS. The buildings with complex construction, i.e. the old ITC buildings composed of
various concatenated prisms, are represented as composite objects. The surface objects in
SSS are more than the surface objects in FDS, which is a result of different texture
assignment, i.e. to a surface object in SSS and to a geometric object (face) in 3D FDS. For
SSS, this means that each surface of reality (in the worst case only one face) that is textured
with one image file has to be defined as a surface object. The Enschede data set, for example,
has walls mapped with real images as separate objects (see Table 8-4).

G H I J K L M Y O Z H S W T [\] ^ _ ` G W H I J K a \ \ \

Sidt Theme
1 ITC1_main_roof_t
2 ITC1_main_wall s_t
3 Bld_near_ITC_roof_t
4 Bld_near_ITC_wall s
5 Bld_near_V&D_roof_t
6 Bld_nearV&D_walls

According to the logical model, 3D FDS has 13 tables but we implemented 9 (tables that
contain explicitl y described relationships are omitted). SSS has 25 but we have implemented
18. The size of the tables is computed on the basis of the type and size of the fields reserved
and the number of the records. For example, the size of the records in BODYOBJ is 24b (see
Table 8-5). The BODYOBJ table has two fields (bid, theme): the type of bid is integer
(4bytes), as the type of theme is 20 char (20bytes). All the computations are presented in
Table 8-5 and Table 8-6, where b/r stands for "bytes per record", num.rec stands for "number
records" (with respect to the available data) and bytes is the total size of the data in bytes. The
zeros in the tables mean that the relational table exists in the database but data are not
provided. Similar relations from both schemas have the same size, e.g. BODYOBJ (3D FDS)
and BODY_T (SSS). In the logical model, the data related to GA and GB are stored in the
tables with “extension” AB, in contrast to the conceptual model where GA and GB are
normalised (see Chapter 7).

A subset of the tables in SSS is composed, which contains data similar to 3D FDS. This is
the information that formally corresponds to GDsc, GR and T. The explicit relationships GR
are omitted in both implementations; therefore the size of the relational tables is computed
with respect to GDsc and T.

193

b c d e f g h i j k l m l n o p q r f s t q u v e f u f w x f y z f e c x q s w c e x c d e f p

Enschede Vienna
Name B/r Num. rec. bytes Num. rec. bytes
Bodyobj 24 18 432 1600 38400
Surfobj 24 7 168 0 0
Lineobj 24 0 0 0 0
Pointobj 28 8 224 0 0
Face 20 1533 30660 18578 371560
Arc 12 2403 28836 25003 300036
Node 16 960 15360 30756 492096
Edge 13 4834 62842 92268 1199484
Total 161 9763 138522 168205 2401576

b c d e f g h { j n n n o p q r f s t q u v e f u f w x f y z f e c x q s w c e x c d e f p

Enschede Vienna
Name b/r Num. Rec. bytes Num. rec. bytes
Comob_G 9 9 81 0 0
Comob_AB 33 2 66 0 0
Comob_T 24 2 48 0 0
Body_G 10 92 920 18578 185780
Body_AB 32 11 352 1600 51200
Body_T 24 11 264 1600 38400
surf_G 10 1441 14410 0 0
surf_AB 32 19 608 0 0
surf_T 24 19 456 0 0
line_G, 10 0 0 0 0
line_AB 34 0 0 0 0
line_T 24 0 0 0 0
Point_GABT 38 8 304 0 0
Face 10 4834 48340 92268 922680
Node 16 960 15360 30756 492096
text_G 13 28 364 0 0
text_A 34 7 238 0 0
Wrl 34 2 68 0 0
Total 411 7445 81879 144802 1690156

b c d e f g h | j n q r f s t n n n } q x ~ z f p v f � x x s � l p � c w y b � n n n h �

Enschede Vienna
b/r Num. Rec. bytes Num. rec. bytes

Body_G 10 92 920 18578 185780
Body_T 24 11 264 1600 38400
surf_G 10 1441 14410 0 0
surf_T 24 19 456 0 0
line_G, 10 0 0 0 0
line_T 24 0 0 0 0
Point_GAT 28 8 224 0 0
Face 10 4834 48340 92268 922680
Node 16 960 15360 30756 492096
Total 156 7365 79974 143202 1638956

To evaluate the impact of R-tree tables on the data volume, appropriate calculations of
their size are provided separately (see Table 8-8). Bearing in mind Case study 2, an R-tree
with N=3 entries is implemented. The leaf table is only one and contains the identifiers of the

194

objects and minimum maximum co-ordinates of the bounding per object (body, surface).
Non-leaf tables have non-constant numbers and depend on the height of the R-tree,
respectively on the number of object stored. The total number of objects in the Enschede data
set is 26, in Vienna 1600. Consequently, the height of the R-tree for Enschede data is three
and for Vienna data seven. A record in the non-leave table contains the identifier of the
current non-leave, three identifiers of the sub-tree and the min-max co-ordinates of the MBB.
Since the number of records is different for each R-tree table, the total number of the records
in all the non-leave tables is given. According to the position in the R-tree, geometric objects
and constructive elements receive a code, which is recorded in an extra field in the _A tables
(for objects), FACE and NODE. Since they do not introduce new records, the total number of
records is given by the sum of R-tree tables (see Table 8-8).

� �

Enschede Vienna
b/r Num. tab. num. Rec. bytes Num. Tab. num. rec. bytes

R-tree leaves 26 1 26 26 1 1 600 41600
R-tree non-leaves 32 3 13 416 7 803 25696
Code body_A 4 0 11 44 0 1 600 6400
Code surf_A 4 0 19 76 0 0 0
Code face 4 0 4834 19336 0 92 268 369072
Code node 4 0 960 3840 0 30 756 123024
Total * 4 39 23738 8 2 403 565792

Finally, Table 8-9 summarises the size cost 3D FDS, the content of SSS equal to 3D FDS
(denoted with SSS-). SSS without R-tree tables (denoted by SSS) and SSS including R-tree
tables (SSS+).

� �

Enschede Vienna
b/r num. rec. bytes num. Rec. bytes

FDS 161 9763 138522 168205 2401576
SSS- 156 7365 79974 143202 1638956
SSS 411 7445 81879 144802 1690156
SSS+ * 7 484 105 617 147205 2255 948

SSS in all three variants presented requires less disk space than 3D FDS. A comparison of
size between 3D FDS and SSS- reveals that 3D FDS is almost twice as large. The volume of
data for SSS- is 42% and for 3D FDS 32% respectively for Enschede and Vienna. The table
NODE is the same in both models, the two groups of tables BODYOBJ & BODY_T and
SURFOBJ & SURF_T are almost identical. The number of surface and body objects is
different but influence on the volume of data is minor. Clearly, the biggest difference comes
from 1) the number of CnsO maintained (face in SSS versus arc, face and edge in 3DFDS),
and 2) the manner of representing the GO (surface and body) by CnsO, i.e. FACE,
BODY_G and SURF_G tables in SSS, FACE and EDGE tables in 3D FDS. In the following
analysis, we will assume that the size of SSS- is approximately 35% of the size of 3D FDS
and we will evaluate the influence of the ARC table and different geometric representation
separately.

The ARC table occupies about 20% (Enschede) and 13% (Vienna) of the total storage
space of 3D FDS. The fewer ARC records in the Vienna data set are caused by the lack of

195

DTM. The ratio node:arc:face, which is usually quite stable for TIN (1:3:2), is 1:2.5:1.6 for
Enschede and 1:0.8:0.6 for Vienna. This is to say that the Enschede data set is an example of
almost completely triangulated surfaces. In contrast, the Vienna data set contains only faces
with four and more nodes (30-40 see Table 8-14). These figures are an indication that the
size of the ARC table can vary from data set to data set but cannot decrease below 10-12%
and cannot increase above 20-25%. Hence, the average "cost" of arc's existence is evaluated
at about 18% of the total size of 3D FDS.

The second factor that contributes to the improved performance of SSS is the different
geometric representation of body and surface. The table FACE (SSS) is conceptually similar
to the table EDGE (3D FDS), i.e. both of them represent the relationship between face and
the next low dimensional CnsO: arc (3D FDS) and node (SSS). They differ in the relational
implementation: 10 bytes in SSS against 13 bytes in 3D FDS. This is an indication for the
more expensive face_arc than the face_node relation. Table FACE (3D FDS), which
represents the co-boundary relationships face_body and face_surf, does not have an
equivalent in SSS. BODY_G and SURF_G are the two new tables, which contain the
boundary relationships body_face and surf_face. In general, the information that can be
extracted from FACE and EDGE table in 3D FDS is almost identical to the information of
BODY_G, SURF_G and FACE in SSS (see also Chapter 5). Consequently, we should
evaluate them together, i.e. the size of FACE+EDGE versus FACE+BODY_G+SURF_G
tables. Despite the slight difference between EDGE (3DFDS) and FACE (SSS), they can be
ignored to show the space needed for the relations among face, surface and body only (see
Table 8-10). The calculations are based on the values in bytes given in Table 8-5and Table
8-7.

� ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ¬ ® ¯ ¬ ° ± ® © ® ² ³ ´ µ ¶ © ª « ¬ · ¸ ® ¹ º ¯ ² » ¼ © º ¯ ° ² ² ² ½

Relational tables Schema Enschede Vienna
Bytes Bytes

1 FACE + EDGE 3D FDS 93 502 1 574 044
2 FACE + BODY_G + SURF_G SSS 63 670 1 108 460

Difference 1-2 3DFDS - SSS 29 832 465 584
3 FACE 3DFDS 30 660 371 560
4 BODY_G + SURF_G SSS 15 330 185 780

Difference 3-4 3D FDS - SSS 15 330 185 780

As can be seen, the explicit boundary (body-face, surface_face) representation of these
relations is much "cheaper". The differences in the volumes of data obtained from the two
representations of surface, body and face, i.e. the tables containing information about them, is
denoted as difference 1-2. The difference in representations of surface and body is denoted as
difference 3-4 (see Table 8-10). Table 8-11 shows the impact (in %) of the discussed volumes
of data on the size of 3D FDS.

� ¡ ¢ £ ¤ ¥ ¦ ¦ ¨ � ¾ £ ¿ À µ Á À Â ª ¼ « Á ¡ ¢ £ Ã Ä Á ¾ £ Å £ À Æ £ Á Ç È ¿ Ç £ É Ç £ µ £ Ã Á Á È À Ã

Enschede Vienna Enschede Vienna
Bytes Bytes % of 3D FDS % of 3D FDS

3D FDS 138552 2401576 100% 100%
SSS- 79974 1638956 57% 68%
ARC 28836 300036 21% 12%
Difference 1-2 (Table 8-10) 29832 465584 21% 19%
Difference 3-4 (Table 8-10) 15330 185780 11% 7%

196

It can clearly be seen that the sum of the data contained in SSS-, the ARC table and the
difference in geometric representations (i.e. difference 1-2) are approximately equal to the
size of data in 3D FDS. Thus, the tests and the analysis have verified that geometric
representation of the SSS is more eff icient than 3D FDS. Moreover, the better performance is
due to reversal of geometric representations (from co-boundary to boundary) and elimination
of the ARC table.

Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ê Ô Î Õ Ö × Ø Ö Ù Ú Û Ü Ú Ý Ë Þ ß à Ð Ø á Î Î Ø Ë Ì Í Î ×

Enschede Vienna Enschede Vienna
bytes bytes Enlargement

in % of SSS-
Enlargement

in % of SSS -
SSS- 79974 1638956 100% 100%
SSS 81879 1690156 2% 3%
SSS+ 105 617 2255 948 32% 37%

The enlargement of SSS with additional information (behaviour, colours, and textures)
and corresponding R-tree tables and codes, still does not exceed the size of the 3D FDS
(Table 8-9). GB and GA increase the size of database by only 2-3% (see Table 8-12). It
should not be forgotten that the size of the images for texturing is not considered. Here, only
the parameters maintained in SSS are considered.

The disk space occupied by SSS+, i.e. SSS including the R-tree and the codes is about
30% larger than SSS. This number includes the size of the R-tree tables and the additional
fields for the codes in the tables for CnsO and GO. The impact of the R-tree tables is minor,
i.e. about 2% of the total size of SSS+ (see Table 8-8). The enlargement is a result of the
codes introduced. The main contribution gives the FACE table. Since the type of relations
kept there is 1:m, further normalisation of the FACE table will im prove the performance. The
test verified that the supplementary information including the R-tree representation lead to a
size that is compatible (even smaller) with the size of 3D FDS. Hence, the results of the
overall performance test related to time verify the argumentation of the conceptual design
presented in Chapter 5.

8.4.2 Time performance
The tests are performed under the several assumptions and simpli fication li sted below:

• Since the key issue of our approach is visualisation of 3D spatial analysis, the
performance test related to time focuses only on queries, which result in a VRML
document.

• As mentioned in Section 8.2.2, even though the outcome of the query might be a
CnsO, the VRML document is to be created including the GO (GOs), which
contains this particular CnsO. In this respect, the visualisation of spatial queries
passes two compulsory phases. First, the data needed to complete the user query is
specified and, second, the data to create the VRML document is extracted. The
objects included in the VRML document may vary considerably depending on the
preferred manner for representation (see Section 8.2.2). Irrespective their number and
way of representation, all the objects require the set of standard parameters for scene
design (see Chapter 2) structured according to the VRML syntax (see Chapter 4).
Thus the data needed for VRML documents are constant, i.e. co-ordinates, faces,

197

orientation, texture, texture co-ordinates, colour and a number of minor variable
parameters. We wil l refer to the query that extracts data for a VRML creation as a
visualisation query.

• The queries are simplified to extract only geometric description (the colour is
constant). Since the parameters for visualisation might be organised in a similar way
in 3D FDS, the issue is not relevant for testing.

• The tests conducted here refer to visualisation queries as the result of simple user
queries. The first argument for this restriction is the specifics of the visualisation
queries, i.e. they require traverse of all the tables concerning geometric description
(see below). The second argument is that the eventual bad performance of such
queries wil l be an indication of even worse performance of complex user queries.
The last argument refers to the variety of user queries, which may be quite significant
and require special schema for investigations.

• The experiments are based on representative queries that are embedded SQL
statements. The geometric description in VRML differs significantly from the
geometric description in both the conceptual models. This is to say that an SQL
query cannot extract the needed subset of data. However, a particular subset of data
extracted in a certain sequence can be formulated in an SQL query and further
reorganised to match the VRML syntax. Thus, the visualisation query in our system
is composed of two distinct steps: first, extraction of the data by an SQL statement
(the data are the ID of the faces of a particular object (body or surface), the order of
the nodes in a face and co-ordinates of the nodes, i.e. fid,enoseqf,nid,xc,yc,zc);
second, further reorganisation of the data by a host language (in our case Perl, the
language used to write CGI scripts).

• The visualisation queries are typical select operations (see Chapter 2) and the SQL
operator SELECT is therefore used to extract the needed data from the database. The
SELECT SQL operator may or may not include the two phases (i.e. user and
visualisation query) in one statement. For example, the query "visualise the buildings
inside certain area" can be expressed by one SQL statement while the query "check
for duplicated points" cannot be completed with one SQL statement. The tests carried
out here refer to the simpler case, i.e. user queries that are presentable by one
SELECT statement. The basic expression of the query is:

SELECT fid,enoseqf,nid,xc,yc,zc FROM <tables> WHERE <condition> ORDER BY
fid,enoseq

The time for completion of the query is tested first internally at a database level and
second externally at the client site. The first experiments are pure database SQL queries
executed on the server inside the RDBMS. The time for data extraction is provided
automaticall y by the RDBMS at the completion of the query. The time for creation,
transmission and parsing of a VRML document is registered manually. The time considered
is between the moment of starting CGI scripts and the complete display of the result in VR
browsers.

The basic SQL query "find all the data necessary for the VRML document" is interpreted
in different ways for FDS, SSS and SSS+ (SSS+R-tree coding). To introduce the way of

198

query in SSS and 3D FDS we assume the simplest case, i.e. only one object (OBJECT) is
extracted. The SQL statement wil l have the following syntax in 3D FDS:

FDS (body):
SELECT DISTINCT face.fid, enoseqf, nid, xc, yc, zc FROM bodyobj, face, edge, arc, node
WHERE bid=OBJECT AND ((bid=bidleft) OR (bid=bidright)) AND face.fid=edge.fid AND
edge.arcid=arc.arcid AND ((arcbeg=nid AND forback<>0) OR (arcend=nid AND
forback=0)) ORDER BY edge.fid, edge.enoseq

Bearing in mind the constant right body position of "outer space" with respect to every
face and the lack of adjacent buildings in both test sites, the SQL statement was simpli fied.
One of the tables is not traversed and one OR condition is removed. Thus the SQL
expressions (body and surface) that were used for testing 3D FDS have the following syntax:

FDS (body):
SELECT face.fid, enoseqf, nid, xc, yc, zc FROM face, edge, arc, node WHERE
bidleft=OBJECT AND face.fid=edge.fid AND edge.arcid=arc.arcid AND ((arcbeg=nid AND
forback<>0) OR (arcend=nid AND forback=0)) ORDER BY edge.fid, edge.enoseq

FDS (surface):
SELECT face.fid, node.nid, xc,yc,zc,sid FROM face,edge,arc,node WHERE
fpartofs=OBJECT AND face.fid=edge.fid AND edge.arcid=arc.arcid AND ((arcbeg=nid
AND forback<>0) OR (arcend=nid AND forback=0)) ORDER BY edge.fid, edge.enoseq

The SQL statements to extract the identical data set from SSS and SSS+ have the forms
presented below:

SSS (body):
SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM bodyg, face, node WHERE bidg=OBJECT
AND fidb=fid AND nidf=nid ORDER BY fid, enoseq

SSS (surf):
SELECT fid, enoseq, nid, xc, yc, zc, sidd FROM surfg, face, node WHERE sidg=OBJECT
AND fids=fid AND nidf=nid ORDER BY fid, enoseq

SSS+(body):
SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM bodyg, bodya, face, node WHERE
bidg=OBJECT AND fidb=fid AND nidf=nid AND codeb=coden ORDER BY fid, enoseq

SSS+(surf):
SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM surfg, surfa, face, node WHERE
sidg=OBJECT AND fids=fid AND nidf=nid AND codes=coden ORDER BY fid, enoseq

Compared with 3D FDS both SSS and SSS+ SQL statements contain simpler WHERE
conditions, which is already an indication for a shorter time for database traverse. The six
SQL queries were executed for a number of representative objects of the two data sets, i.e.

199

Enschede and Vienna. The Enschede data set is rather small, therefore the results have
contributed only to the comparison between 3D FDS and SSS (see Table 8-13). The SQL
queries based on R-tree coding were irrelevant as well and were not performed. The Vienna
data set does not contain surfaces, therefore only the BODY queries were completed (Table
8-14). Since the cost of SQL query based on 3D FDS already had a very high value at the
database level, the tests from the client station is not performed for both data sets (see Table
8-13 and Table 8-14).

â ã ä å æ ç è é ê ë ì í î ï ð æ ñ æ ò æ î ò î ó ò æ ë ó í ò æ ô í ã å ã í ñ æ õ ò æ ô í ã å ò æ î ò

Objects 3D FDS SSS
Internal test

SSS
External test

Number of
Vertices

Number of
faces

Number of
database records

One building 14sec 0.2 sec 2 sec 16 10 48
One surface 4sec 0.06 sec 2 sec 11 1 12
Composite object 20sec 0.2 sec 2 sec 24 15 72
DTM 15min 30 sec 50 sec 703 1399 4197
Entire model - 40 sec 60 sec 842 1533 4293

â ã ä å æ ç è é ö ë ÷ ó æ í í ã ò æ î ò î ó ò æ ë ó í ò æ ô í ã å ò æ î ò

Number
Buildings

3D FDS SSS Number of
vertices

Number of
Faces

Number of
Database records

1 7 min 15 sec 22 13 66
2 13 min 30 sec 42 25 126
10 47 min 3 min 138 89 414
20 - 6 min 366 223 1 098
50 - 13 min 1 072 636 3 216
200 - 27 min 4 028 2 414 12 084
400 - 56 min 7 930 4 765 30 938
600 - - 12 046 7 223 36 138
1600 - - 30 756 18 578 92 196
BID 818 40 sec 62 33 186
BID 773 50 sec 80 42 240

The results demonstrate faster traverse of SSS tables compared with 3D FDS tables. The
better performance of SSS, however, is not suff icient for real work in a client-server
environment. The results obtained for the Enschede data set (small data set) are satisfactory
for small subsets and disappointing for large ones (e.g. DTM needs 50 sec external time). The
traverse seconds increase drastically in the case of large models (Vienna), e.g. 200 buildings
(about several neighbourhoods) already need 27 minutes internal time and 40 minutes
external time (see Table 8-14 and Table 8-16). As mentioned before, the external time is
influenced by a broader spectrum of factors (server occupation, Internet connection, host
programming language), the internal time is precisely the traversing time of the tables. This
requires database optimisation of the queries. The optimisation of the relational tables
(irrespective of schema) can be achieved in several ways:

R-tree restriction of the query. The R-tree grouping of data was mainly introduced to
restrict the search scope (when it is possible) to only those objects which are in one non-leaf
of the R-tree. For this purpose, a code is assigned to each GO (hosted by tables _A) and
CnsO (see Chapter 5). This code was implemented for BODY and NODE tables for the
Vienna data set. The SQL query using the code is a two-step query: first the code of the
object is provided and then the actual query is performed, i.e.

200

1. SSS+(body):
SELECT codeb FROM bodya WHERE bidg=OBJECT

2. SSS+(body):
SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM bodyg, bodya, face, node WHERE

bidg=OBJECT AND fids=fid AND nidf=nid AND coden<codeb+1 ORDER BY fid,
enoseq

The results of the tests are shown in the second column of Table 8-15.
ø ù ú û ü ý þ ÿ � � � � ü � � ù � ü � � � � � ü � � � � ü � � ù û � ü � � � � � 	
 ù � ù ú ù � ü � � � � � � ù � � � � �

Number
Buildings

SSS SSS+ SSS
index on

face

SSS+
index on

face

SSS
Index on

Face, node

SSS+
index on

face, node
1 15 sec 4 sec 10 sec 0.50 sec 0.33 sec 0.12 sec
2 30 sec 8 sec 17 sec 1.50 sec 0.17 sec 0.17 sec
10 3 min 30 sec 1 min 30 sec 5.24 sec 0.32 sec 0.30 sec
20 6 min 2 min 2 min 30 sec 1 min 50 sec 0.75 sec 0.65 sec
50 13 min 9 min 8 min 3 min 15 sec 1.7 sec 1.70 sec
200 27 min 22 min 28 min 13 min 7 sec 6.60 sec
400 56 min 36 min 55 min 25 min 15.85 sec 12.32 sec
600 - - - - 21 sec 19.50 sec
1600 - - - - 50 sec -
BID 818 40 sec 9 sec 30 sec 0.33 sec 0.26 sec 0.19 sec
BID 773 50 sec 10 sec 35 sec 0.39 sec 0.23 sec 0.19 sec

Database indexing. An optimisation of the database traverse can be achieved by the
indexing schema provided by the RDBMS (MySQL indexes are based on B-tree). The most
visited tables FACE and NODE were indexed and the tests were performed in both cases
with and without R-tree coding. The effect of the R-tree coding is apparent, i.e. it still
exhibits better performance in the case of indexing only the FACE table (see Table 8-8 and
Table 8-16).

Split of SQL queries. So far, only the six one-line SQL queries to create a VRML
document were considered. However, the user could formulate freely quite complex SQL
statements, involving a lot of tables and conditions. This could easil y lower the performance.
In some cases, splitting the SQL statement and modifying the conditional part can give a
successful improvement. For example, the BODY queries presented above can be separated
into two sub-queries:

FDS (body):
1. SELECT fid FROM face WHERE bidleft=OBJECT;
2. SELECT fid, enoseq, nid, xc, yc, zc FROM edge, arc, node WHERE fid=FID AND

edge.arcid=arc.arcid AND ((arcbeg=nid AND forback<>0) OR (arcend=nid AND
forback=0)) ORDER BY fid, enoseq

SSS (body):
1. SELECT fid FROM bodyg WHERE bidg=OBJECT;

201

2. SELECT fid, enoseqf, nid, xc, yc, zc, bidg FROM face, node WHERE fid=FID AND
nidf=nid ORDER BY fid, enoseqf

FID stands for the set of face identifiers obtained from the first step. The reduction in
traverse time is essential: the internal time for one building from Vienna data is 22 sec for 3D
FDS and 0.12 sec for SSS. The reorganisation of the SQL statement does not influence the
GUI. It can be formulated as a one-line statement and parsed by the CGI script on the fly.
The results shown in Table 8-16 are obtained applying this approach. The times obtained for
SSS are even better than the corresponding ones from the internal query (see Table 8-14).

� �

Number
Buildings

SSS SSS+ SSS
Index on

face,node

SSS+
 index on
face,node

1 10 sec 6 sec 4 sec 4 sec
2 20 sec 8 sec 4 sec 4 sec
10 3 min 12 sec 5 sec 5 sec
20 5 min 40 sec 1min 45 sec 5 sec 5 sec
50 14 min 5min 40 sec 11 sec 8 sec
200 40min 15 min 51 sec 40 sec 36 sec
400 - 38 min 20 sec 80 sec 68 sec
600 - - 2 min 1 min 40 sec
1600 - - 4 min 20 sec -

Three important conclusions can be drawn on the basis of these time performance tests.
First, SSS has shown notably better performance than 3D FDS, e.g. the time needed to
extract two buildings from 3D FDS is 13 minutes vs. 30 seconds for SSS (see Table 8-14).
Second, the R-tree coding system introduced is effective even in the case of relaxed
limitations. Note that the SQL statement uses a right-restrictive condition "coden<codeb+1".
This is to say that the condition becomes less restrictive if codeb increases. The effect of R-
tree will be more eff icient with double-sided restrictions. Third, with the contribution of
standard database techniques and query optimisations, the time performance of SSS
(respectively SSS+) can be improved to the level needed for web query and visualisation, e.g.
600 buildings can be extracted and displayed on the user's screen within two minutes (see
Table 8-16). The results are compatible with other web systems providing geo-information in
the form of 2D maps (i.e. image) lacking interaction. For example, using the ATM locator of
VISA (see Visa, 1999), one can obtain a 2D map of streets (approximately an area of 1x1km
scale 1:1000) in two minutes. Having the country already specified, the HTML document
(the 2D map and list of addresses accepting Visa card) is generated and displayed on the
screen in a minute.

8.5 Summary
The implementation issues discussed above demonstrate and verify several basic concepts
threaded in this thesis.

The test has contributed to the proof of the main hypothesis of the thesis. The
performance of SSS in terms of database size and time is essentially better than 3D FDS. The
improved performance is a consequence of the arc's omission and strict boundary
representation of the geometric and constructive objects. The test has verified that the arcs

202

have the largest impact on the performance. In this context, the modifications of geometric
description, on the basis of which SSS was derived, are relevant. The performance test has
demonstrated that the optimisation of the topological model is still insuff icient and requires
indexing mechanisms. In this respect, the coding system derived from the 3D R-tree acts as a
spatial indexing and improves the performance. All the experiments with SSS+ have
performed better in terms of time than SSS. The tests were carried out on a subset of all the
data that have to be organised for a municipal system. The subset reflects those data, which
were specified mostly by technology-driven requirements (see Chapter 4). Thus the tests
contributed to the completion of the third research objective

The tests executed illustrated the overall feasibil ity of the presented client/server
approach. The user is capable of accessing, querying, editing and visualising 3D urban data.
Case study 1 has demonstrated that an appropriate GUI (for different users) can be developed
in order to specify queries and visualise 3D spatial analysis. A number of positi ve
characteristics of the approach, flexibility, extensibility and portabil ity, were discussed. The
major negative characteristic of the prototype system is the limited possibiliti es for editing.
The manner of editing tested is database editing. This aspect of the approach needs further
investigations with respect employing Java applets instead of CGI scripts. The performance
test was of great importance for the validation of the system architecture and the components
selected. The time performance (after a number of optimisations at database level) is
shortened to figures acceptable for the Web. The performance tests provide suff icient
evidence to consider the second objective of the thesis completed.

Case study 2 tested the concept for automatic creation of LOD based on 3D R-tree. The
algorithm for 3D R-tree grouping creates conglomerates of objects, which can be used as
coarse LOD for visualisation. On the basis of existing in the database data, the LOD can be
composed in a flexible manner with respect to the needs of each set of data for visualisation.
The experiments on the dynamic creation of LOD stil l have to be completed.

The prototype system was successfully assembled by freeware software components. The
low-cost solution was specified as a recommendation for a municipal system aiming at a
variety of clients with numerous different quali fications. Although any of the components of
our system can be replaced, the prototype is a feasible solution.

