Chapter 8

Implementation: prototype system, case
studies

This chapter is devoted to the implementation of the concepts discussed in the previous
chapters, i.e. approach for visualisation and interaction over the Web presented in Chapter 4
and the Simplified Spatial Schema elaborated in Chapter 7. The geometric description of
gpatial ohjedsin SSSis based on the Spatial Simplified Model introduced in Chapter 5. SSM
was defined under the hypothesis that an omisson of the 1D smplex (i.e. arc) will preserve
the @pacity of the spatial model to perform 3D topological relationships and will improve its
performance Chapter 6 has already demonstrated that the topological relations differentiated
on the basis of the 9-intersention modd are fully supported by the SSM, i.e. the omisson of
arcs does not violate its potential for spatial anaysis. This chapter focuses on a verification of
the performance A better performance of SSS(concerning cetabase size and time) will prove
the validity of our hypothesis. For this purpose, our approach for query and visuaisation is
redised in a prototype system. Experimental GUI interface is developed both 1) to
demonstrate the concept for 3D visuaisation of spatial analysis on the Web and 2) to allow
testing of the performance The appli cability of the mncept for a dynamic aedion of LOD is
tested by investigations of different methods to group dbjectsin 3D R-tree

The dhapter is organised in four parts, i.e. adescription of the prototype system and three
case studies. It garts with a short overview of the aomponents used for the dient/server
implementation, i.e. Web server, DBMS, Web and VR browsers, Perl language, and
motivates the seledion made. Case sudy 1 dscusses the GUI and several examples of basic
semantic and spatial queries and the arresponding visualisation of results. Case study 2
discusses the building o the 3D R-tree Case study 3 discusss the sdeded representative
queries used to evaluate the performance of SSS The experiments are performed on the two
test sites discussed in Chapter 7. A fina discusson of the results obtained concludes this
thesis.

8.1 Prototype system

The components of the proposed system architedure (recdl Chapter 4, Figure 4-7) are a Web
server, RDBMS and language for CGI scripting (on the server site), VR and Web browsers
(on the client site) and corresponding herdware. The @mponents were seleded in accordance
to the fundamental consideration for a low-cost and easy-to-implementation solution. In
general, proof-of-concept system architedure inquires minimal investments and a possble
redisation in arelatively short time. A more pragmatic asped — the low-cost components wil
be of practicd benefit for the intended application of the system architedure, i.e. municipa
activities and service Therefore the study and sedledion of components was limited to the
software and hardware airrently available in ITC, freevare modules and evaluation versions
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of commercial software. A short overview of the important features motivating the choice is
presented bel ow.

Apache isthe Web server seleded for the prototype system. The Apache server isafredy
available server written by a non-profit team of developers, i.e. the Apache software
foundation (see Apache 1999). Officially released as Apache in April 199, the daemon was
aready the most popular one on the Web based on HTTP protocol. Since that time, it has
gained alot of popularity with its gable work, many advanced features and a rdatively easy
set-up (see Stein 1997). Apache works under many operation systems (Windows, UNIX,
Linux) on different hardware platforms (i.e. microcomputers and workstations). The
requirements for available disk space (1.5Mb), processor (486DX) and memory (16Mb
RAM) are moderate. The server has arealy been in use quite along time and most of the
software problems have dready been resolved. All these @nsiderations motivated the
eledion of the Apache server. Some dternatives are the commercial Web servers WebSte
(seeO'Reilly and Associates 1999, WebSTAR (see StarNine 1999) and Microsoft®@SteServer
(see Microsoft 1999. WebSite runs under Windows operation system (Windows95 and
WindowsNT). Some initial experiments were caried out within the one-month evaluation
period provided by the demonstration version. The server has quite similar features to
Apache. WebSTAR is a Web server for Machintosh. Microsoft®SiteServer runs only under
WindowsNT with the suite of Microsoft products, e.g. Visual C++ and Microsoft Foundation
Classes (MFC), Javat++, Microsoft SQL server, ODBS, etc.

MySQL is a client/server relational database management system implementing SQL.
MySQL consists of a server and client programs and libraries. The freewvare server was
launched for the first time in 1996, with the intention of dealing with very large databases,
which no vendor can provide. The developers (see TcX, DataKonsultAB, 1999 provide
numbers of manageable tables and reards, which are compatible with about 100 Gb data
Despite some limited functiondity (hosted SELECTs and view are till missing), the
database system is widely used for a variety of applications. It is available for almost all
kinds of hardware platforms and operation systems. A variety of Applicaion Programming
Interfaces (API) in different languages (C, C++, Perl, Python, Java, TCL) are fredy avail able
on the Web. Other attractive features are: a very fast JOIN operation, the posshility to access
tables from different databases in the same query, a very fast B-treeindexing based on disk
tables and compresson, etc. Some benchmarks have showed significantly better speed
performance mmpared with other DBMS (mSQL, PostgreSQL, Microsoft Access, Oracle).
The database does not provide a GUI, eg. “query by example’, which, however, was not
needed for the system architedure. Another freaware DBMS are mSQL (see Hughes
Tednologies 1999 and PostgreSQL (see PostgreSQL, Inc. 199). MSQL is a very light
database system designed to provide fast access to small data sets. Since interest in the
database is increasing, the last release promises an enhanced functionality. PostgreSQL is an
objed-oriented (OO) RDBMS.

It supports SQL3 and provides extended OO posshiliti es to define types and classes. The
database system is available for Unix-like operation systems. At the time of devel opment of
our prototype system, the performance of PostgeSQL (Postgres95) was worse than MySQL
and the availabil ity of APIs was rather limited. These features are mnsiderably improved in
the new releases, which makes PostgreSQL an option for a DBMS in our approach. Some
initial tests (mostly spatial queriesin 3D FDS and SSS caried out with Microsoft Acoess
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have shown rather unsatisfactory performance, which eliminated the RDBMS on avery early
stage.

Per| was the language used in our system to write CGI scripts. In generd, CGI scripts can
be aeated in any programming language (C, C++, Python, Java, TCL, Pascal, Delphi). The
compiled languages such as C and Pascal gain in speal in the case of computational
operations. Theinterpreter languages (Perl, Python, TCL), are more suitable when command-
line-based operations have to be performed. A typical example of such operations is the
submisson of SQL queries to a database. Developed originaly as a Unix language, Perl is
now available for most of the wmputer platforms and can be fredy downloaded from
Comprehensive Perl Archive Network (see CPAN 1999). Another crucial feature of the
language is the large number of freeware CGI scripts, libraries and APIs, which, further
extended, save alot of programming effort. Two of them, i.e. CGl.pm and DBI.pm to create
fill -out forms and accessMySQL database, were used for the implementation of the system.
More information about them can be found in Bunce 199, Stein 1998 and Wiedmann 19S.

The Wb server and the RDBMS were install ed under LINUX on Pentuim 133 MHz, 96
Mb RAM. The tests were mnducted from a dient station equipped with the Web browser
Netscape (see Netscape Communication Corporation 199) and the VR plugin Cosmo
player, running under Windows 95. The user on the dient site can use awy other Web
browser supporting frames, e.g. Microsoft Explorer, and any VR browser (supporting
VRML2.0), which has a plug-in version for the sdeded Web browser (see Web3D
Consortium, 1999

In general, different suites of components can be realised under the cndition of a low-
cost system. Some examples are lised below. The arrent configuration, i.e Apache
MySQL and Perl, can be installed under Windows 95/NT or any other UNIX operation
system. Apache server and Perl language can be combined with mSQL (for small data sets).
Apache server, PostgreSQL and Python scripting languege ae yet another posshle
configuration for UNIX (LINUX) operations g/stems. APl written in Python to access
PostgreSQL is dready avail able. This configuration premises the ability to compose complex
objed types at database level and perform extended SQL queries, features which may
facilitate and smplify the CGI scripting. In principle, Apache server can be integrated with
Microsoft Access DBMS, but the scripting language has to be danged to C or Pascal
(Delphi). Ingredients for our system architedure can be seleded from among commercialy
available systems as well. Practically any DBMS (Oracle, Informix, SyBase, DB2, etc.) can
be employed for a data warehouse. The scripting language in most of the ases hasto be C or
Pascal.

The hardware cnfiguration seleded as a server is moderate. The understanding was that
an acceptable performance on such equipment with test data would be a premise for a good
performance on a better hardware @nfiguration with larger data sets.

The prototype system is used to verify three oncepts proposed in thisthesis. Firs, it has
to demonstrate that the goproach for accessand visualisation of 3D GIS dataisfeasible. The
ways to spedfy queries and explore results, discussed in Chapter 4, are illustrated by an
experimental GUI elaborated in Case study 1. Seaond, the prototype system has to provide
evidence of an improved performance of SSS A set of representative queries on two data sets
are used as an indicaor. The type of the queries and the gproach to testing the results are
explained in Case study 3. Finally, the prototype system hasto validate the R-treeindexing in
two of its aspeds: 1) the spatial grouping of objects is appropriate for dynamic aedion of
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LOD and 2) the ade introduced in Chapter 7 is efficient. For this purpose, an agorithm for
the R-tree onstruction, applying different constraints, is presented in Case study 2. The
effed of R-tree @des with resped to the assveration of the database traverse is then
discussd in Case study 3.

All the tests are performed on the two experimenta sites created in the Chapter 7. The
first test gite, i.e. the cantral part of Enschede, contains photo-textured buildings and terrain,
trees, lampposts, streds and parking lots. The modd is relatively small but contains most of
the relational tables acoording to SSS The semnd test site, i.e. Vienna, consists of only
buildings. Thetest siteis Smpler in terms of a variety of objeds and oljed components (only
the BODY_G, BODY_T and BODY_A are created); however, the number of objectsis quite
high. The first data set was used mostly to illustrate the GUI and suggested manner to
compose queries, extract data and perform results. The second one was employed in regard to
speal performance of the system. The @se study on dynamic LOD credion presents
examples from bath data sets.

8.2 Case study 1: GUI for query and visualisation

The GUI presented is organised in framed HTML documents in maximum two windows.
According to aur approach, the HTML documents are intended for the formulation of queries
(typing or seleding parameters) and to dsplay information (text, raster, movie, sound, etc.).
Basically, the Weéh browser can visualise every file format that has defined MIME format
and corresponding plug-in or helper applications assgned to it (and is available on the client
ste). Thelist of standard formatsis arealy quite long and can be additionally extended (see
Stein 197). The VRML document is used to provide a graphicd display of 3D spatid
andysis and to facilitate the identification (by visual observation) and seledion of objects to
query. Here, we illustrate four of the steps presented in Chapter 4, i.e. query, data
visuali sation, data modification and local query (see also Zlatanova 1999%, 199%). The first
step, i.e. user identification and detabase sdledion is of a minor sgnificance for the
evaluation of system functionality and therefore is not implemented.

8.2.1 Data query

The development of GUI was guided by the investigations into user requirements. Chapter 3
has already discussd the variety of users approaching the municipal 3D GIS and their
probably different experience with GIS. In this resped, the GUI has to allow an easy,
intuitive way to query a broad spedrum of spatial and semantic information (see &so
Coomans et a 1997). Therefore, we have eperimented with three onceptually different
approachesto requesting for information: multiple-choice one-line SQL queries, formulation
of complex queries. The multiple-choiceforms offer avery smple way to obtain information
about certain ohjects. The limited choiceis the only disadvantage. We suggest these forms be
used only for query of information per object. Then the menu may contain al the items of
interest per object. Example 1 dscusses the steps to oldain information and the layout of the
form.

Qualified users are dlowed to send SQL statements to the database. The SQL statement is
spedfied in an HTML fill -out form. The result of the query is displayed either in an HTML
or in a VRML document. Several SQL forms treating different situations, i.e. “free SQL
query”, “SELECT”, “SELECT+ visualise " are designed and tested. The freeSQL form isthe

176



smplest one: a two-section frame gives the user the posshility to type an SQL query and
look at theresult in the second part. In fact, the Web browser acts a gandard line interface of
the DBMS. Currently, the form works only with text information (seeFigure 8-1). In generd,
most of the SQL command can be "dressed" with a GUI based on HTML fill -out forms.
Depending on the desired SQL statement, the layout may vary. For example, the form
"SELECT" offers a separate text field for each key word (i.e. seled, from, where, order by)
of the statement. Example 2 explains the formsin detail.

The forms mentioned above allow query of spatial and semantic information of objects
that can be expressed by one SQL statement or seleded by a multiple choice menu. A large
number of queries are more awmplex and nead a host language to process the result of series
of SQL statements (see Chapter 2). We have developed several spedalised HTML fill -out
formsto illustrate the way we resolve these @ses, i.e. Examples 3 and 4 We group and doffer
al the spedalised formsto the user in an individual HTML document (seeFigure 8-2).
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Figure 8-1: Free SQL query Figure 8-2: Specialised HTML forms

Example 1: Query of spatial and attribute information per object (pull-down menus)

The example presents a way to extract information about a particular objed, i.e the user
visually deddes which objed to query insde the VRML document. The user has at his
disposal atwo-sedion frame. One of the sedions displays the VRML document and the other
can be used for instructions. The VRML document is created in such a way to provide point-
and-click operation. In the snapshot (see Figure 8-3), the building closer to the viewer is
"equipped” with a VRML sensor and thus available for pointing. A click with the mouse on
the building activates a CGI script, which ddivers the Query-Result sedions to the client
station.

In the Query sedion a pull-down menu dfers sveral options. co-ordinates of the
buil ding, image file used for texturing the walls of the building (in this example one image
file is used for all the four textured walls), a VRML containing only the building, and the
interior of the building. The choice made in the first Query sedion hasto be sent to the server
by pressng the Submit button. The CGI script proceses the form and creaes a new HTML
document. The snapshot represents the ase when the interior of the building is seleded.
Sincetheinterior is kept as a panoramic movie, the newly created HTNL contains the name
and the location of the fil e. The browser displays the delivered HTML document in the Result
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sedion of the frame. This option needs the SmocthMovie plug-in for visualisation. The
snapshot of the screen is made a the fina stage, i.e. the interior of the building is sleded,
the HTML document has arrived and the panoramic movie plug-in is activated. This example
isthe realisation of the two-step query discussed in Chapter 4. The first step is identification
of the buil ding and the seand step is seledion of the information. The query in this example
is restricted to the several options in the pull-down menu. The choice however, can be
further extended by activation of a CGlI script to deliver an SQL form with larger possbiliti es
for query.
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Figure 8-3: Query of spatial and semantic information about an object

Note that in the example the reference between the VRML objed (a node in the VRML
document) and the ID of the crresponding oljed in the database is aready established. The
ID recognition of the oljeds, however, hasto be completed prior to the stage described in the
example. Reall Chapter 4, that either each olject (resp. node in VRML) has to have its own
CGI script (with known ID) suitable for user request, or only those sdected by the user.
Bearing in mind the large number of CGI scriptsin the first case, we give preferences to the
second option. Unfortunately, CGI scripts do not have accessto VRML nodes, cannot control
their status and thus no information about the actuad 1D of the object is provided. This
information has to be given by the user. We suggest a method of organisation by an
intermediate VRML document, where the user will pick up the ID of the objects by using the
extended TouchSensor, described as a new PROTO node (see Chapter 4). In practice, an
event “mouse-over-object” activates an ECMAscript, which visualises the ID and an event
“mouse-cli ck-on-object” activates a CGI script, which delivers an HTML fill -out form where
the user can type the ID observed. Another CGI script creaes dynamically the HTML frame
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and the VRML document described in the example above. The VRML document already
contains areference between ID and nodes for all the objects pointed by the user.

Example 2: QL queries; "SELECT" and "SELECT+visuali se"

The primary interest in this research isthe visualisation of 3D spatial queries. "Trandated" to
our approach, this means that the CGI script not only retrieves the data from the database but
also represents the result in a VRML document in an appropriate way for the user. As
discussd in Chapters 4 and 5 the syntax of the VRML requires a geometric description
different that maintained by the cnceptual model. Therefore, the SQL statement has to
ensure sufficient data for VRML creaion and efficient ordering o faces. The data and the
order required are displayed in the fill-out form. The interface is based on a two-sedion
framed HTML document. The left part is reserved for typing SELECT statements and right
part isused to dsplay either HTML or VRML documents. The form corredly fill ed is sent to
the server and a HTML document is assembled as a first document (on the left side of the
frame). On the basis of the result obtained, the user deddes whether to continue with VRML
creation. The intermediate step isincluded basically to provide greater freedom on the result.
It can be avoided with a control over 1) the fields in the form and 2) the data extracted from
the RDBMS. Such control, however, will restrict the functiondlity of the form to anly VRML
documents. Figure 8-4 shows a snapshot of the Web browser after VRML visuali sation.
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Figure 8-4: SQL queries: SELECT and visualise

The freeaccessto the database provides a mecanism to spedfy and display a wide range
of gpatial queries. Each request in the spatial domain (formulated by spatia or non-spatial
restrictions) which can be described in one SELECT statement cen also be visualised in a
VRML document. Examples of such queries are “which is the highest building?’, “show the
buildingsin aparticular area”, “show all the streds”’, “show all the administrative buildings’.
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The same mechanism can be used to create DELETE, UPDATE, and INSERT forms to edit
data.

Example 3: Comnon faces

This example illugtrates retrieval of neighbourhood réationships, i.e. “common nodes’ and
“common faces’. In the form, the user has to clarify the objeds that have to be inspeded, i.e.
the user has to e aware of the objeds' ID. Asdiscussed above, the ID can be provided with a
VRML document. An option to analyse the relationship between two dbjeds is offered as
wdl. An asterisk, ingtead of ID, extends the seach among all the oljeds in the database.
Figure 8-5 is a snapshot of the query "show all the ommon walls'. The fields for ID are
fill ed-in with agterisks. The right sedion of the frame displays the two bodies obtained. The
invisible face between them isthe cmmon face Sincethe query cannot be completed on the
basis of SQL queries, the programming languege used for CGI scripting (in our case Perl)
acts asahost language.
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Figure 8-5: Specialised queries: common faces

Example 4: Visihility dheck

The last example demonstrates facilitation and smplification complex analysis by an
appropriate 3D visualisation. The field of vision (or line of vision) is important information
for telecommunication, geodetic, military appli caions, etc. For example, a mohil e telephone
company could be interest in verification of the actual position of a transmitter. This can be
trandated to a query "ched the visibility between the positi on of the transmitter and the roof
of that building" or "show the range of the transmitter”. To require such information, severa
ways of spedfying the query a posshle: 1) co-ordinates of begin and end points of the line of
vision, 2) 1D of thetwo points or 3) one point and the range of view (represented as e.g. cone
of view). In our example, we mnsider the @ase when the two co-ordinates are to be input.
The outcome of the query must be a set of objects, which disturb the view. Theoretically, this
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query requires complex 3D intersedion algorithms between the line of vision and the faces
forming the oljeds in the range of the line. Here, we present a smple solution based on a
visual ingpedion of the actua path of a traversing line between the two points. The line of
vision is drawn in the VRML world and the user can observe the points of disturbance A
form to illustrate the idea is shown on Figure 8-6. The user has to type the w-ordinates of
two points and as a result she/lhe gets a VRML document with a subset of the model
surrounding the points of interest. A line through the points traverses the diredion. In the VR
browser, the user can navigate aound the disturbing olject, insped and evaluate the
Stuation. Appropriate sensors (extended Touchsensor presented in Chapter 4) attached to the
objeds provide identification information, e.g. the ID of the oljeds or the name of the owner
(company or private person).
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Figure 8-6: Specialised queries: visibility control

8.2.2 Data visualisation

The visualisation of spatial data and more spedfically results of 3D spatial analysis in our
approach has three aspeds: 1) geometric representation, i.e. objeds vs. parts of objeds, 2)
components of the scene and 3 means for further exploration.

In this thesis, we asaume that objects with a momplete set of CnsO will be visualised on
the screen. For example, the result of the spatial query "show the walls of buil dings, which
touch this stred”, will be represented by the stred and surrounding buil dings (the wall s might
be highlighted or not) instead dof the stred and the adjacent walls. Since we provide the user
with the posshility to navigate insgde the world, we consider the supdy of "shape realism”
compulsory. All the examples of VRML worlds given in the thesis are under the asaumption
of complete geometric representation of objects on the screen.

Different approaches to compose a scenein a VRML document can be implemented. The
simplest way to get fast results on the screen is the visuali sation only of the oljects eleded by
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the query displayed in shading mode (see Chapter 2). Some of the queries described above
are examples of this approach (Examples 2,3,4). However, very often the view with the
objedsis very limited and does not provide information about the surroundings. A part of the
town (neighbourhood, several streds with buildings along them) commonly has to be
included in the VRML document to facilitate the orientation. Tedniques uch as different
pre-defined views, highlighting, blinking, guiding animation or seledive texturing cen be
applied to focus the attention. The objectives of the thesis do not include detailed
investigation into the problem. Figure 8-7 gives examples of a highlighted stree and guded
animation. The "ca™ (a smal red paraldepiped in Figure 8-7b) brings the user to the
building seleded by a query. The part of the VRML document containing the VRML nodes
controlling the animated ca is given in Appendix 4. More examples on focusing the attention
by applying VRML tedhniques can be found in Ogao 1997.

Since the enhanced techniques to display spatial queries and attract the attention require
extra VRML nodes, they have to be used with attention. To ou experience the user hasto be
prompted to request for spedfic way for visualisation. For example, before the actua
composition of the VRML document, the user can be asked to sdled between objects for
visuali sation. Such approach is followed in Example 4, i.e. prior the VRML design the user
may choose whether to have DTM and gid of co-ordinates visualised. Figure 8-6 is an
example of grid seledion.
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Figure 8-7: Visualisation of spatial analysis

8.2.3 Data modification

Changes at database level can be exeauted either by the "free SQL" form presented ealier or
by development of forms smilar to "SELECT+visudise'. Both ways, however, require the
user to be skill ed in typing SQL queries. Sincethisis not aways the ase, we have devel oped
an alternative approach based on multiple choice and spedfic fields to import new values.
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Figure 8-8: Editing co-ordinates for texture mapping of a building

Example 5: Modification of information

The eample form suggests a method of edit operation at database level. Here, the
dynamically created VRML document is used for verification. Again the initial VRML
document hasto be eyuipped with the necessary sensors to deted user actions on a particular
objed. A click on an object activates a CGI script, which provides two sedions: a Change
sedion where the optional changes are listed and a Values sedion to dsplay the old values
and introduce new ones. Currently, the form offers three options: change of co-ordinates of
points, change the name of the image file used for texturing and change of the texture @-
ordinates. The snapshot given in Figure 8-8 shows "change of texture w-ordinates'. The
operation is relevant for users who want to experience, e.g. a new fagade of a building. They
will neal to have the name of the image with the new fagade axd a mechanism to reference
points from the image to the real co-ordinates of the geometry of the building. The steps
necessary to match texture onto the faces are listed to the left side of the snapshot (seeFigure
8-8). A submisgon of the type of the operation (i.e. change texture m-ordinates) activates a
search in the database for the old image @-ordinates. An HTML document with co-ordinates
and field to type new ones is delivered in the sedion Values. In this sdion, the user has to
type the new co-ordinates. The submisgon of the new values to the server will modify co-
ordinates in the corresponding database fields and will crede a VRML document for
verification (i.e. VRML with results). The texture can be adjusted after several repetitions of
the operation. The way to edit co-ordinates (seeFigure 8-9) or change the name of the image
filesfor texturing (seeFigure 8-10) isidentical to the one described for textures.
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8.2.4 Data exploration and manipulation

Thelocal query refersto gperations, which are already coded in the VRML document but the
user has to activate them (see Chapter 4). To demongtrate such operations, we assume that
one building has sveral textures gored in the database and the user neals to compare them.
Then they can be included in one VRML document but only one of them can be visible at a
time We have assembled certain VRML nodes, which provide the user with means to switch
them. The second textured huilding in the last example has a sensor attached to it (seeFigure
8-8). A click on the building will result in replacement of the fagade of the building, i.e the
image file used for texturing will be replaced with a new one. The difference with the
previous example is that no connedion to the server is made. The spedfic VRML nodes
(sensors, routes and ECMAscript) link the "switch-on-click" operation to a script, which
sequentially changes the images at every clicking an the buil ding.
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Figure 8-9: Editing of co-ordinates Figure 8-10: Editing of the image file for

texturing

It must be dear that the mmplete functional GUI is a responsible task requiring further
investigations. Here, we have demonstrated that the query, retrieval and visualisation of data
are feasible within the system architedure proposed. Functional GUI will be achieved by
appropriate seledion and structuring of the approaches presented here. The isaueis related to
the user identification and database seaurity. The operations that will be provided to different
categories of users have to be first clarified and then the approach for query, editing and
visualisation hasto be darified. For example, the GUI for end users (see Chapter 3) might be
appropriate to be based on pull-down menus (Examples 1 and 5 and a number of forms
similar to "SELECT+visualise" and "common nodes' to perform SQL operations. The GUI
for consumers must al ow greder accessto the database, therefore preference has to be given
to the SQL forms. The municipality (being a wnsumer) neals grict determination between
the dients of its 3D GIS. For example, the dvilians might be granted the lowest level of
asessto the system, which means that several standard pull-down menus for query will be
sufficient.
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8.3 Case study 2: Dynamic creation of LOD

This case study is devoted to the investigation of algorithmsto group the ohjedsin 3D R-tree
structure. The isaue has two spedfic aspeds, which neal elaboration. Firdt, the intended R-
treeis threedimensional and most of the algorithms focus on 2D cases. Seaond, with resped
tothelogicd design, our 3D R-treeisintroduced for spatial indexing and dynamic creation of
LOD (seeChapter 7). As discussed in Chapter 4, the VR browser is capable of dealing with
different LOD, i.e. the VR browser choases the neaded LOD and deddes on the moment of
switch. The LOD, however, have to be avail ablein the VRML document. We have sdeded a
creation of LOD based on an on-fly extraction of data from the MBB of an R-tree Thisisto
say that some of the MBB of the R-treewill be visualised on the screen, replacing the objed’s
detail ed geometric description. The case study investigates and seleds a method for a 3D R-
tree onstruction, which provides MBB appropriate for LOD.

8.3.1 3D R-tree creation

The aitical isae in the R-tree ceation is the @nsolidation of objects in a leaf. The
algorithms to huild the dasdcal R-tree ad its modifications (eg. R+) are based on 2D
subdivision of the spacewith resped of the shape of the oljeds. Kofler 1998, investigates the
only R-treebased on 3D boxesingead of triangles. Despite the third dimension, the grouping
of the objects is based on a predefined subdivision of 2D space A 2D redangular mesh with
constant width controls the grouping. One R-tree leaf contains the objects that fall in a
particular patch of the mesh. Moreover, all the objects of which the upper left corner of their
2D projedion fallsin the sameredangle ae grouped in one R-treeleaf. If the objed does not
fall completely in the redangle, an enlargement of the bonding box is done to comprise the
objed. The minimal width of the mesh is calculated on the basis of the average ohjed size.
The method allows the @mnstruction of a very well balanced R-treein 2D space

The aiterion to goup several objects in a leaf is usually not influenced by the third
dimension when the R-tree is utilised for spatial indexing. In our case, however, ceatain
MM B are part of the scene. They will appea behind the detailed oljects and will participate
in the formation of the town's silhouette. Small houses and buildings in general will have no
impact. The high ones, however, are most likely to be visible. Being a part of the R-treelesf,
the building may be grouped with other buildings in a significent distance from each other.
Thus the MBB for these leaves will have the height of the highest buil ding and foundations
covering alarge aea, e.g. one neighbourhood. The MBB displayed later as LOD will crede a
misleading perception of a group of high buildings in the neighbourhood.

In our approach, we investigate the impact of an object's height on the shape and size of
the R-tree boxes. The intention is to group the neaest ohjeds and preserve (as much as
possble) the structure of the town until certain levels of the R-tree For example, the parent
boxes of the R-tree ontaining Hgh buil dings have to remain the highest box and have to be
relatively situated at same location. Respectively, it has to be possble to indicate the aeas
with low density of houses. R-tree boxes created under such considerations can be used to
seled geometric descriptions for LOD.
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1) N=2, Dh

4) N=3, Dh

10) N=5, Dh 11) N=5, Di 12) N=5, A

Figure 8-11: MBB of objects: different criteria for grouping

The MBB of objects is based on the traditional approximation of MBB, i.e. its faces are
pardlée to thex, y, z ais planes. The incorporation of an object in anode, investigated here,
is based on two parameters, i.e. the number of R-tree @trances and the distance (or angle)
between the objects at first step and the MBB afterwards. Threeapproaches to group objects
were investigated: 1) horizontal distance 2) inclined digance aad 3 minimum-maximum
angles between the masscentres of the objeds (MBB). First and seand approaches sled the
N-closest (N is the number of the R-tree etrances) ohjeds among all the objeds, according
to respedively, the horizontal and inclined distance between mass centres. A threshold
prevents incorporation of distant ohjeds. The third agorithm seleds the objects according to
the height of the MBBsS, i.e. two objed are asdgned to ane parent node if the angle between
the masscentres fall s in a given threshold. These three approaches for grouping were tested
with the Enschede data set. The results are presented in Figure 8-11. The different cases are
snapshots of the MBB visualised in VRML documents. The orientation of the objects in all
the snapshots is approximately the same in order to facilitate the comparison. Thus the two
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MBB representing the highest buildings 1 and 2 (seeFigure 8-12) in the ste ae dways at the
top of the snapshot (bordered by acirclein Figure 8-11 1).

The number of objeds per R-treenode (i.e. entrance N) varies from 2 to 5 The thresholds
used were Dh,Di=150m for distance and 45<Di<75 degreefor angle The first column with
snapshots (Figure 8-11 cases 1,4,7,10) presents the results when the criterion is the horizontal
distance (Dh). The seamnd column (Figure 8-11 cases 2,5,8,11) presents the results when the
criterion is the inclined distance (Di) and the third column shows the results applying the
angle criterion (A). Figure 8-12 is a snapshot of the Enschede test site with implemented
MBB of objeds for one of the LOD.
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Figure 8-12: Enschede: MBB (left) and LOD (right)

The snapshots are a godd illustration of the dfeds of the three approaches. It is obvious
that the number of entrances per R-tree node has the major influence Two entries per node
preserve almost completely the mutual distribution of objects, but result in alarge R-tree(see
Table 8-1). Five entrances per R-tree node may cause misguiding effeds and are
consequently not to be recmmmended. For example, the group o two high buildings (1,2 in
Figure 8-12) isnot recognisable anymore in cases 9) to 12). The stred (4 in Figure 8-12) will
be replaced with a high, large box, as if several buildings are there instead (10,11,12 in
Figure 8-11). The box over the stred (4 in Figure 8-12) in cases 11 and 12is even higher one.
The best grouping for this data set can be observed with three ad four entries per R-tree
node (cases 4,5,6,7,8 in Figure 8-11). This number of entries gill exhibits the major structure
of thetown.

Variations on the basis of the distanceangle aiterion are lessapparent. The case 9) N=4,
A indicates that the usage of only the angle criterion may lead to very large box composites.
In general, large baxes cause considerable overlapping, which often sows down traverse of
the R-tree

The @ses 4) N=3, Dh, 7) N=4, Dh and 8) N=4, Di shift the group centre of the highest
buildings (1,2 in Figure 8-12) to theright. A comparison between cases 7) and 8) gives me
advantages to 8) becuse the block of boxes in 7) creates the impresson of a more amplex
structure than two parale buildings. The @ses 5) N=3, Di and 6) N=3, A are dmost
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identicd and give the best generalisation of the oljed distribution: 1) a group of high
buildings in the upper corner, and 2) two lower building complexes in the right and left
bottom corners. The boxes are rdatively balanced and compact. On the basis of these
considerations, we adopt the approach with the number of entrances three ad inclined
distance

4) R-tree, level 5

3) R-tree, level 6

5) R-tree, level 4 6) R-tree, level 3

Figure 8-13: Vienna, MBB of objects and R-tree non-leaves

Table 8-1 shows the number of faces neaded for visualisation with resped to dfferent R-
treerepresentations. The MBB created applying two distance approaches are the same, and
therefore, no separation is made. The height of the R-treefor the Enschede data set is three
Theresults presented in the table refer to the first non-leaf level of the R-tree

Table 8-1 : Enschede, R-tree size comparison

Number Number ~ Number of faces
of boxes  of faces  Includingterrain

Original objects 29 249 1533
MBB of objects 29 174 180
R-treg N=2, distance 15 90 96
R-treg N=3, distance 10 60 66
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R-tree N=4, distance 8 48 54
R-tree N=5, distance 6 36 40
R-tree N=3, angles 12 72 -
R-tree N=4, angles 10 60

R-treg N=5, angles 9 54

The sdleded R-tree onfiguration was verified on alarger data set (Vienna, 1600 ofjeds).
The height of the resulting R-treeis sven. Figure 8-13 presents siapshots of five R-tree
levels. The red circle focuses attention on the highest building in the town (real oheds),
which remains the highest bax in exactly the same rner of the town as the proportion
(width-building/width-town) is preserved. The aea surrounded by a yellow box has low
building density,which is preserved until level four (cases 1,2,3,4). Table 8-2 contains the
number of MBB and corresponding faces for the Vienna data set.

Table 8-2: Vienna, R-tree levels, N=3

Objectdr-treelevels Number Number Objectdr-treelevels Number Number
of boxes  of faces of boxes  of faces

Objects 1600 18578 4 60 360

7 (MBB) 1600 9600 3 20 120

6 534 3204 2 7 48

5 178 1068 1 3 18

Although the results are promising, the approach needs further investigations and tests.
The dgorithms were tested only for a single threshold. In the third approach (based on
angles), the distance between the ohjeds was not considered. We exped better grouping
when a combined (distancetangle) approach is applied. The three dgorithms (and eventual
extensions) nead a cmparison with existing methods, e.g. the dasscal R-tree algorithm or
the dgorithm used by Kofler 1998. Nor is the time performance of the dgorithms evaluated.
Isaues related to the maintenance of the tree i.e. operations delete, insert, updete, seach, are
not treated. Thereseach interest was limited to dbjects grouping appropriate for LOD and it
was compl eted.

8.3.2 Organisation of LOD

The organisation of LOD requires the amnsideration of several factors. LOD are relevant for
large data sets. Therefore, first it has to be dedded whether and which VRML documents
need LOD. Severa small VRML worlds linked together by sensors and inline nodes may
create the same dfed. Second, the usage of texture has to be evaluated as well. The
navigation through a VRML world without textures is much faster. Third, it should not be
forgotten that the LOD hasto be included in the VRML document. This refleds the time for
delivery to the dient station and the time that the VR browser neeals for parsng. Table 8-1
and Table 8-2 contain the number of faces that has to be added to the VRML document, in
addition to the detailed description. The fourth consideration focuses on the moment of
switch between the LOD. The compromise between redism and fast navigation should be
resolved. Early replacement of the detail ed geometric description with the first LOD usually
disturbstheredigtic view (seeFigure 8-12), but minimises the geometry for visuali sation and
Speals up navigation.

18¢



All the factorsindicae that every model may have aseparate schema of LOD clarifying
which level will contain what geometric description. For example, we have successfully
tested two different schemas for our experimental dStes. The Enschede data set has the
following LOD (see Figure 8-12, right): LODO—detailed geometry plus image texturing;
LOD1-cktailed geometry without texture, LOD2-MBB of objeds. Since the model was
rather small, the oljeds are repeaed creating three different neighbourhoods. The Vienna
modd does not contain textures, therefore the LOD created for the second data set were
different: LODO—detailed geometry; LOD2-MBB of objects; LOD3-toxes of the R-tree
(level five). Both schemas of LOD (as well as some different) do not require more data than
are available in the database. In this resped, the suggested method to derive LOD from the R-
tree boxes alows a flexible way to design the LOD with resped to the modd for
visuali sation.

8.3.3 Dynamic creation of LOD

The positive results obtained from utilisation of R-three boxes for LOD motivate the next
step, i.e. the dynamic credion within our visualisation approach. The limitation of CGlI
scripting, i.e. one dynamically created document per connedion, does not leave many
choices. LOD can be aeated dynamically either in the body of the arrent document or as
separate documents on the server. The first approach resultsin very long VRML documents,
which causes transmisson and parsing delay. The second approach permits me time
optimisation by simultaneoudy writing al the necessary documents. However, it credes alot
of temporary documents on the server, which can be removed only after the user logs out.
Further investigations are necessary to select the appropriate gproach.

8.4 Case study 3: Performance

The last case study examines the performance of SSS The results contribute to the
verification of the moddl and the overall evaluation of the system architedure. Recll Chapter
5, that SSV was proposed as an dternative to 3D FDS for our system architedure. In this
resped, the definition of SV and thelogical model SSSare mnceptualy related to 3D FDS.
Therefore, the basic idea of the test is a prodf of the improved performance of SSSwith
resped to 3D FDS. Two aspeds of the performance ae investigated here, i.e. size of the
database and speal to complete queries.

The performance test concerning size mncentrates on the dfect of three mgjor concepts
in SSS 1) the dimination of arcs and modified representation of some relationships, 2) the
maintenance of R-treetables and fields for codes and 3) the storage of geometric attributes
and behaviour. While the reduction in the database size due to arc removal can be predicted,
the dfect of modified relationships and the storage of additional data is difficult to evaluate.
Thistest investigates whether the modified geometric description of SSSprovides a sufficient
reduction to compensate for the size of the new included data. If thisisthe ase, the tests will
be considered succesdul, i.e. SSSensures more dficient data organisation than 3D FDS.
Sedion 8.4.1 elaborates theisae.

The performance test concerning speed focuses on the time needed to traverse the
database. The time for VRML creation, delivery and parsing used for comparison in Chapter
5 (seeTable 5-6), is of minor interest here. Fird, the time for database traversal is dependent
on the entire geometric description of objeds (CnsO, GO and explicit relations between
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them), i.e. the isaue of interest for this thesis The other threetimes are related mostly to the
number and shape of faces (within the same hardware and software ejuipment). The faces,
however, are kept equal for SSSand 3D FDS (seebelow) in our experiments. Sewnd, the
two times are arrdated, i.e. more faces (obtained from triangulated surfaces) result in a
larger VRML document (i.e. longer ddivery time), which, however, neals less time for
parsing. The dfect of the number and shape of the faces on the speed for delivery and parsing
reguires sparate investigations.

Suppementary investigations related to the absolute waiting time on the dient station and
posshiliti es for reduction are caried out only for SSS The operations at database level are
further optimised by utilising 1) the introduced R-tree @des, and 2) the database-indexing
medanisms provided by the RDBMS. The am of the tests is twofold: 1) to evaluate the
efficiency of the R-tree ©des and 2) to demonstrate the dfed of some standard posshiliti es
for optimisation (i.e. database indexing), which are not explicitly discussed in the thesis. The
performancetest regarding timeis presented in Sedion 8.4.2.

To provide sufficient evidence for discusson, two of the data sets (i.e. Enschede and
Vienna) are implemented in the same RDBMS according to bah conceptual models. The
logical moddl, the set of representative queries and the manner of recording and presenting
results are maximally unified to avoid vague and mideading conclusions.

8.4.1 Size performance

The test is based on comparison between the sizes (in bytes) of SSSand 3D FDS of two data
sets. The szes are omputed with resped the cmponents GDsc, GA, GB, T and the data
needed for the R-tree Compared with 3D FDS, SSSconsists of more tables and contains a
larger spedrum of data. In addition to the GDsc and T (maintained in 3D FDS), SSShosts
data related to GA, i.e. colour of objeds, texture, parameters for 3D representation of line
and point ohjects, GB and R-tree tables. As discussed (see Chapter 5), 3D FDS can aso
incorporate such data. Moreover, an R-tree structuring similar to SSScould be organised for
3D FDS aswell. The size of the database will increase exactly with the size of the parameters
of GA and GB and the R-treetables in SSS Therefore, these data ae not considered for 3D
FDS. Theresults of size @mmputations are organised in several tables, i.e. from Table 8-5 to
Table 8-9. First, the total size of the two databases is computed (Table 8-5 and Table 8-6),
second the size of the tables corresponding to GDsc+T isgiven (Table 8-7), and third the size
of the R-treetablesis cdculated (Table 8-8). The final comparison is given in Table 8-9. All
the computations are presented for two data sets, i.e. Enschede and Vienna

The Enschede data set is obtained from the procedure for 3D digitisng and oljed
remnstruction from large-scale aerid photo images (see Chapter 7). As a result of the
procedure, al the buildings have verticd walls, flat or gable rodfs. Two of the buildings have
several bodies on top of one other, i.e. their walls do not reach the ground Several surfaces
(DTM, a number of streds, parking lots), line (traffic lights, lampposts) and point (trees)
objeds are represented in the data set. Some of the rodfs and wall s are textured with real
photo images.

The Vienna data set is obtained from a point list with the rodf outlines. The pre-
processng steps can be found in Kofler 1998. The data set contains only buildings. The
buil dings have verticd walls and flat rodfs as the height per building is constant. There is no
texture gplied to any of the buil dings. The number of objeds in the tables according to bath
conceptual models can be seen in Table 8-3.
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Table 8-3: Number objects

3D FDS Enschede Vienna SSS Enschede Vienna

- - - Composite object 2 -
Body object 18 1600 Body object 11 1600
Surface objedt 7 - Surface objed 19 -
Line object - - Lineobject -

Point object 8 - Point object 8 -
Faces 1533 18578 Faces 1533 18578
Arcs 2403 25003 - - -
Nodes 960 30756 Nodes 960 30756
Edges 1533 92 268 - - -

The type of the objects in bath mode s differs for Enschede due to the new data type
composite object introduced in SSSand different representation of some of the badiesin 3D
FDS. The buildings with complex construction, i.e. the old ITC buildings composed of
various concatenated prisms, are represented as composite ohjects. The surface objects in
SSS are more than the surface objects in FDS, which is a result of different texture
assgnment, i.e. to a surface objed in SSSand to a geometric objed (face) in 3D FDS. For
SSS this means that each surface of redlity (in the worst case only one face) that is textured
with oneimage file hasto be defined as a surface object. The Enschede data set, for example,
has wall s mapped with real images as separate objects (seeTable 8-4).

Table 8-4: Part of SURF_T table, SSS

Sidt Theme
ITC1_main_roof_t
ITC1_main_walls t
Bld_near_ITC_roof_t
Bld_near ITC_walls
Bld_near_V&D_roof_t
Bld_nearV&D_walls

oA WNE

According to thelogical model, 3D FDS has 13 tables but we implemented 9 (tables that
contain explicitly described relationships are omitted). SSShas 25 but we have implemented
18. The size of the tables is computed on the basis of the type and size of the fields reserved
and the number of the reaords. For example, the size of the recrdsin BODYOBJ is 24b (see
Table 8-5). The BODYOBJ table has two fields (bid, theme): the type of bid is integer
(4bytes), as the type of theme is 20 char (20bytes). All the computations are presented in
Table 8-5 and Table 8-6, where b/r stands for "bytes per record”, num.rec sands for "number
records’ (with resped to the available data) and bytesis the total size of thedatain bytes. The
zeros in the tables mean that the relationa table exists in the database but data are not
provided. Similar relations from bath schemas have the same size, eg. BODYOBJ (3D FDS)
and BODY_T (SSS. In the logical modd, the data related to GA and GB are stored in the
tables with “extension” AB, in contrast to the cnceptual modd where GA and GB are
normali sed (seeChapter 7).

A subset of thetablesin SSSis composed, which contains data similar to 3D FDS. Thisis
the information that formally correspondsto GDsc, GR and T. The eplicit relationships GR
are omitted in bath implementations; therefore the size of the relational tables is computed
with resped to GDscand T.
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Table 8-5: 3D FDS, size of implemented relational tables

Enschede Vienna
Name B/r Num. rec. bytes Num. rec. bytes
Bodyobj 24 18 432 1600 38400
Surfobj 24 7 168 0 0
Lineobj 24 0 0 0 0
Pointobj 28 8 224 0 0
Face 20 1533 30660 18578 371560
Arc 12 2403 28836 25003 300036
Node 16 960 15360 30756 492096
Edge 13 4834 62842 92268 1199484
Total 161 9763 138522 168205 2401576

Table 8-6: SSS, size of implemented relational tables

Enschede Vienna
Name bir Num. Rec. bytes Num. rec. bytes
Comob_G 9 9 81 0 0
Comob_AB 33 2 66 0 0
Comob_T 24 2 48 0 0
Body G 10 92 920 18578 185780
Body_AB 32 11 352 1600 51200
Body T 24 11 264 1600 38400
aurf_ G 10 1441 14410 0 0
surf_AB 32 19 608 0 0
surf T 24 19 456 0 0
line_G, 10 0 0 0 0
line AB 34 0 0 0 0
line T 24 0 0 0 0
Point_ GABT 38 8 304 0 0
Face 10 4834 48340 92268 922680
Node 16 960 15360 30756 492096
text_G 13 28 364 0 0
text_A 34 7 238 0 0
wrl 34 2 68 0 0
Total 411 7445 81879 144802 1690156
Table 8-7: Size of SSS with respect to GDsc and T (SSS-)
Enschede Vienna

bir Num. Rec. bytes Num. rec. bytes
Body G 10 92 920 18578 185780
Body T 24 11 264 1600 38400
aurf_ G 10 1441 14410 0 0
surf T 24 19 456 0 0
line_G, 10 0 0 0 0
line T 24 0 0 0 0
Point_GAT 28 8 224 0 0
Face 10 4834 48340 92268 922680
Node 16 960 15360 30756 492096
Total 156 7365 79974 143202 1638956

To evaluate the impact of R-treetables on the data volume, appropriate @lculations of
their size ae provided separately (see Table 8-8). Bearing in mind Case study 2, an R-tree
with N=3 entriesis implemented. Theleaf tableis only one and contains the identifiers of the
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objeds and minimum maximum co-ordinates of the bounding per ojed (body, surface).
Non-leaf tables have non-constant numbers and depend on the height of the R-tree
respedivey on the number of objed stored. The total number of objeds in the Enschede data
st is 26, in Vienna 1600. Consequently, the height of the R-treefor Enschede data is three
and for Vienna data seven. A recrd in the non-leave table mntains the identifier of the
current non-leave, threeidentifiers of the sub-tree ad the min-max co-ordinates of the MBB.
Sincethe number of recordsis different for each R-treetable, the total number of the records
in all the non-leave tablesisgiven. According to the position in the R-tree geometric objects
and constructive dementsrecave a code, which isrearded in an extrafield in the _A tables
(for ohjeds), FACE and NODE. Sincethey do not introduce new records, the total number of
recordsisgiven by the sum of R-treetables (seeTable 8-8).

Table 8-8: Size of R-tree tables and codes

Enschede Vienna

b/r  Num. tab. num. Rec. bytes  Num. Tab. num. rec. bytes
R-treeleaves 26 1 26 26 1 1600 41600
R-treenonleaves 32 3 13 416 7 803 25696
Code body_A 4 0 11 44 0 1600 6400
Code surf_A 4 0 19 76 0 0 0
Code face 4 0 4834 19336 0 92268 369072
Code node 4 0 960 3840 0 30756 123024
Total * 4 39 23738 8 2403 565792

Finally, Table 8-9 summarises the sze @mst 3D FDS, the mntent of SSSequal to 3D FDS
(denoted with SSS). SSSwithout R-treetables (denoted by SSS and SSSinduding R-tree
tables (SSS).

Table 8-9: Size comparison: SSS vs. 3D FDS

Enschede Vienna
bir num. rec. bytes  num. Rec. bytes
FDS 161 9763 138522 168205 2401576
SSs 156 7365 79974 143202 1638956
SSS 411 7445 81879 144802 1690156
SSS+ * 7 484 105 617 147205 2255948

SSSin all threevariants presented requires lessdisk spacethan 3D FDS. A comparison of
size between 3D FDS and SSS revedals that 3D FDS is amost twice as large. The volume of
data for SSS is 42% and for 3D FDS 32% respedively for Enschede and Vienna. The table
NODE is the same in bath models, the two groups of tables BODYOBJ & BODY_T and
SURFOBJ & SURF_T are almost identical. The number of surface and body objects is
different but influence on the volume of datais minor. Clealy, the biggest difference @mes
from 1) the number of CnsO maintained (face in SSSversus arc, face and edge in 3DFDS),
and 2) the manner of representing the GO (surface ad baly) by CnsO, i.e. FACE,
BODY_G and SURF_G tablesin SSS FACE and EDGE tables in 3D FDS. In the following
andysis, we will asaume that the sze of SSS is approximately 35% of the size of 3D FDS
and we will evaluate the influence of the ARC table and different geometric representation
Separately.

The ARC table occupies about 20% (Enschede) and 13% (Vienna) of the total storage
space of 3D FDS. The fewer ARC records in the Vienna data set are aused by the lack of
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DTM. Theratio node:arc:face which isusudly quite stable for TIN (1:3:2), is 1:2.5:1.6 for
Enschede and 1:0.8:0.6 for Vienna. Thisis to say that the Enschede data set is an example of
almost completely trianguated surfaces. In contrast, the Vienna data set contains only faces
with four and more nodes (30-40 see Table 8-14). These figures are an indication that the
size of the ARC table can vary from data set to data set but cannot deaease below 10-12%
and cannot increase above 20-25%. Hence, the average "cost” of arc's existenceis evaluated
at about 18% of thetotal size of 3D FDS.

The second factor that contributes to the improved performance of SSSis the different
geometric representation of body and surface The table FACE (SSS is conceptualy similar
to the table EDGE (3D FDS), i.e. bath of them represent the rdationship between face and
the next low dimensional CnsO: arc (3D FDS) and node (SSS. They differ in therelational
implementation: 10 bytes in SSSagainst 13 bytes in 3D FDS. Thisis an indication for the
more e&pensive face arc than the face node reation. Table FACE (3D FDS), which
represents the @-boundary relationships face bady and face surf, does not have a
equivalent in SSS BODY_G and SURF_G are the two new tables, which contain the
boundary relationships body face and surf face. In general, the information that cen be
extracted from FACE and EDGE table in 3D FDS is almost identical to the information of
BODY_G, SURF_G and FACE in SSS(see also Chapter 5). Consequently, we should
evaluate them together, i.e. the size of FACE+EDGE versus FACE+BODY_G+SURF G
tables. Despite the dight difference between EDGE (3DFDS) and FACE (SS9, they can be
ignored to show the space nealed for the relations among face, surface and body only (see
Table 8-10). The cdculations are based on the values in bytes given in Table 8-5and Table
8-7.

Table 8-10: FACE+EDGE (3DFDS) vs. FACE+BODY_G+SURF_G(SSS)

Relational tables Schema Enschede Vienna
Bytes Bytes
1 FACE + EDGE 3D FDS 93502 157404
2 FACE + BODY_G + SURF_G SSS 63670 1108 40
Difference 1-2 3DFDS- SSS 29 832 465 584
3 FACE 3DFDS 30 660 371 %60
4 BODY_G + SURF_G SSS 15 330 185 780
Difference 3-4 3D FDS- SSS 15330 185 780

As can be sem, the eplicit boundary (body-face, surface face) representation of these
relations is much "cheaper”. The differences in the volumes of data obtained from the two
representations of surface, body and face i.e. the tables containing information about them, is
denoted as difference 1-2. The differencein representations of surface and bady is denoted as
difference 3-4 (seeTable 8-10). Table 8-11 shows the impact (in %) of the discussed volumes
of dataon thesize of 3D FDS.

Table 8-11: The cost of ARC table and the geometric representation

Enschede Vienna Enschede Vienna

Bytes Bytes %of 3D FDS % of 3D FDS
3D FDS 13852 2401576 100% 100%
SSS 79974 1638956 57% 68%
ARC 28836 300036 21% 12%
Difference 1-2 (Table 8-10) 29832 465584 21% 19%
Diff erence 3-4 (Table 8-10) 15330 185780 11% 7%
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It can clealy be seen that the sum of the data mntained in SSS, the ARC table and the
difference in geometric representations (i.e. difference 1-2) are approximately equal to the
size of data in 3D FDS. Thus, the tests and the analysis have verified that geometric
representation of the SSSismore dficient than 3D FDS. Moreover, the better performanceis
due to reversal of geometric representations (from co-boundary to baundary) and elimination
of the ARC table.

Table 8-12: The cost of GB, GA and R-tree tables

Enschede Vienna Enschede Vienna
bytes bytes Enlargement Enlargement
in % of SSS- in % of SSS-
SSS 79974 1638956 100% 100%
SSS 81879 1690156 2% 3%
SSS+ 105 617 2255948 32% 37%

The enlargement of SSSwith additional information (behaviour, colours, and textures)
and corresponding R-tree tables and codes, still does not exceal the size of the 3D FDS
(Table 8-9). GB and GA increase the size of database by only 2-3% (see Table 8-12). It
should not be forgotten that the size of the images for texturing isnot considered. Here, only
the parameters maintained in SSSare @mnsidered.

The disk space ocaupied by SSS, i.e. SSSincluding the R-tree ad the codes is about
30% larger than SSS This number includes the size of the R-treetables and the alditional
fields for the codes in the tables for CnsO and GO. The impact of the R-treetables is minor,
i.e. about 2% of the total size of SSS (see Table 8-8). The enlargement is a result of the
codes introduced. The main contribution gives the FACE table. Since the type of relations
kept thereis 1:m, further normali sation of the FACE table will im prove the performance The
test verified that the supdementary information including the R-treerepresentation lead to a
size that is compatible (even smaller) with the size of 3D FDS. Hence the results of the
overall performance test related to time verify the argumentation of the cnceptual design
presented in Chapter 5.

8.4.2 Time performance

Thetests are performed under the several assumptions and simplification li sted below:

e Since the key isaue of our approach is visudisation of 3D spatial analysis, the
performance test related to time focuses only on queries, which result in a VRML
document.

« As mentioned in Sedion 8.2.2, even though the outcome of the query might be a
CnsO, the VRML document is to be aeated including the GO (GOs), which
contains this particular CnsO. In this resped, the visualisation of spatial queries
pases two compulsory phases. Fird, the data needed to complete the user query is
spedfied and, sewmnd, the data to crede the VRML document is extracted. The
objeds included in the VRML document may vary considerably depending on the
preferred manner for representation (seeSedion 8.2.2). Irrespedive their number and
way of representation, all the objeds require the set of standard parameters for scene
design (see Chapter 2) structured according to the VRML syntax (see Chapter 4).
Thus the data needed for VRML documents are @nstant, i.e. co-ordinates, faces,
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orientation, texture, texture w-ordinates, colour and a number of minor variable
parameters. We will refer to the query that extracts data for a VRML creation as a
visualisation query.

 The queries are smplified to extract only geometric description (the colour is
constant). Since the parameters for visuali sation might be organised in a similar way
in 3D FDS, theisaieisnot relevant for testing.

e The tests conducted here refer to visualisation queries as the result of simple user
gueries. The first argument for this restriction is the spedfics of the visualisation
queries, i.e. they require traverse of all the tables concerning geometric description
(see below). The seamnd argument is that the eventual bad performance of such
queries will be a indication of even worse performance of complex user queries.
The last argument refersto the variety of user queries, which may be quite significant
and require spedal schema for investigations.

e The &periments are based on representative queries that are embedded SQL
statements. The geometric description in VRML differs sgnificantly from the
geometric description in bath the @nceptual models. This is to say that an SQL
query cannot extract the neaded subset of data. However, a particular subset of data
extracted in a cetain sequence can be formulated in an SQL query and further
reorganised to match the VRML syntax. Thus, the visuaisation query in our system
is composed of two distinct geps: first, extraction of the data by an SQL statement
(the data ae the ID of the faces of a particular object (body or surface), the order of
the nodes in a face and co-ordinates of the nodes, i.e. fid,enoseqf,nid,xc,yc,zc);
second, further reorganisation of the data by a host language (in our case Perl, the
language used to write CGI scripts).

e The visualisation queries are typical seled operations (see Chapter 2) and the SQL
operator SELECT istherefore used to extract the needed data from the database. The
SELECT SQL operator may or may not include the two phases (i.e. user and
visualisation guery) in one statement. For example, the query "visuali se the buil dings
inside cetain area’ can be expressed by one SQL statement whil e the query "chedk
for duplicated points' cannot be cmpleted with one SQL statement. The tests caried
out here refer to the smpler case, i.e. user queries that are presentable by one
SELECT statement. The basic expresson of the query is:

SELECT fid,enoseqf,nid,xc,yc,zc FROM <tables> WHERE <condition> ORDER BY
fid,enoseq

The time for completion of the query is tested first internally at a database level and
second externally at the dient site. The first experiments are pure database SQL queries
exeauted on the server indde the RDBMS. The time for data extraction is provided
automaticdly by the RDBMS at the completion of the query. The time for creation,
transmisgon and parsing of a VRML document is registered manually. The time considered
is between the moment of starting CGI scripts and the complete display of the result in VR
browsers.

The basic SQL query "find al the data necessary for the VRML document” is interpreted
in different ways for FDS, SSSand SSS- (SSSR-tree @ding). To introduce the way of



query in SSSand D FDS we asaume the simplest case, i.e. only one objed (OBJECT) is
extracted. The SQL statement wil | have the foll owing syntax in 3D FDS:

FDS (bady):

SELECT DISTINCT facefid, enoseqf, nid, xc, yc, zc FROM bodyobyj, face, edge, arc, node
WHERE bid=OBJECT AND ((bid=bidleft) OR (bid=bidright)) AND facefid=edge.fid AND
edge.arcid=arc.arcid AND ((arcbeg=nid AND forback<>0) OR (arcend=nid AND
forback=0)) ORDER BY edge.fid, edge.enoseq

Bearing in mind the constant right body position of "outer space' with resped to every
face and the lack of adjacent buildings in bath test sites, the SQL statement was smplified.
One of the tables is not traversed and ane OR condition is removed. Thus the SQL
expressons (body and surface) that were used for testing 3D FDS have the foll owing syntax:

FDS (bady):

SELECT facefid, enoseqgf, nid, xc, yc, zc FROM face edge, arc, node WHERE
bidleft=OBJECT AND facefid=edge.fid AND edge.arcid=arc.arcid AND ((arcbeg=nid AND
forback<>0) OR (arcend=nid AND forback=0)) ORDER BY edge.fid, edge.enoseq

FDS (surface):

SELECT facefid, node.nid, xc,yc,zc,sd FROM faceedge,arc,node WHERE
fpartofsSOBJECT AND facefid=edge.fid AND edge.arcid=arc.arcid AND ((arcbeg=nid
AND forback<>0) OR (arcend=nid AND forback=0)) ORDER BY edge.fid, edge.enoseq

The SQL statements to extract the identical data set from SSSand SSS have the forms
presented bel ow:

SSS(bady):
SELECT fid, enoseq, nid, xc, yc, zc, bidg FROM bodyg, face, hode WHERE bidg=OBJECT
AND fidb=fid AND nidf=nid ORDER BY fid, enoseq

SSS(surf):
SELECT fid, enoseq, nid, xc, yc, zc, sidd FROM surfg, face node WHERE sidg=OBJECT
AND fids=fid AND nidf=nid ORDER BY fid, enoseq

SSS-(body):
SELECT fid, enoseqg, nid, xc, yc, zc, bidg FROM bodyg, bodya, face, node WHERE
bidg=OBJECT AND fidb=fid AND nidf=nid AND codeb=coden ORDER BY fid, enoseq

SSS(surf):
SELECT fid, enoseg, nid, xc, yc, zc, bidg FROM surfg, surfa, face, node WHERE
sidg=OBJECT AND fids=fid AND nidf=nid AND codes=coden ORDER BY fid, enoseq

Compared with 3D FDS bath SSSand SSS SQL statements contain simpler WHERE

conditions, which is already an indication for a shorter time for database traverse. The sx
SQL queries were exeauted for a number of representative objects of the two data sets, i.e.
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Enschede and Vienna. The Enschede data set is rather small, therefore the results have
contributed only to the comparison between 3D FDS and SSS(see Table 8-13). The SQL
gueries based on R-tree oding were irrelevant as well and were not performed. The Vienna
data set does not contain surfaces, therefore only the BODY queries were completed (Table
8-14). Since the cost of SQL query based on 3D FDS aready had a very high value & the
database level, the tests from the dient station is not performed for bath data sets (see Table
8-13and Table 8-14).

Table 8-13: Enschede test site: internal and external test

Objects 3D FDS SSS SSS Number of Number of Number of

Internal test  External test Vertices faces  databaserecords
One building 14sec 0.2 sec 2sec 16 10 48
One surface 4sec 0.06 = 2 sec 11 1 12
Composite object 20sec 0.2 sec 2sec 24 15 72
DTM 15min 30sec 50 sec 703 1399 4197
Entire model - 40 sec 60 sec 842 1533 4293

Table 8-14: Vienna test site: internal test

Number 3D FDS SSS Number of Number of Number of
Buildings vertices Faces  Database records
1 7 min 15sec 22 13 66
2 13min 30sec 42 25 126
10 47 min 3min 138 89 414
20 - 6 min 366 223 1098
50 - 13min 1072 636 3216
200 - 27min 4028 2414 12 084
400 - 56min 7930 4765 30938
600 - - 12 046 7223 36 138
1600 - - 30 756 18578 92 196
BID 818 40 sec 62 33 186
BID 773 50 sec 80 42 240

The results demonstrate faster traverse of SSStables compared with 3D FDS tables. The
better performance of SSS however, is not sufficient for real work in a dient-server
environment. The results obtained for the Enschede data set (small data set) are satisfactory
for small subsets and disappointing for large ones (e.g. DTM needs 50 sec externd time). The
traverse seaonds increase dragtically in the case of large models (Vienna), e.g. 200 buildings
(about several neighbourhoods) already need 27 minutes internal time axd 40 minutes
externa time (see Table 8-14 and Table 8-16). As mentioned before, the externd time is
influenced by a broader spedrum of factors (server occupetion, Internet connedion, host
programming language), the internal time is predsdly the traversing time of the tables. This
reguires database optimisation of the queries. The optimisation of the relationa tables
(irrespedive of schema) can be achieved in several ways:

R-tree restriction of the query. The R-tree grouping of data was mainly introduced to
restrict the search scope (when it is possble) to only those objeds which are in one non-lesf
of the R-tree For this purpose, a code is asdgned to each GO (hosted by tables _A) and
CnsO (see Chapter 5). This code was implemented for BODY and NODE tables for the
Vienna data set. The SQL query using the ade is a two-step query: first the @de of the
objed is provided and then the actual query is performed, i.e



1. SSS(bady):
SELECT codeb FROM bodya WHERE bidg=OBJECT

2. SSS(bady):
SELECT fid, enoseqg, nid, xc, yc, zc, bidg FROM bodyg, bodya, face, node WHERE
bidg=OBJECT AND fids=fid AND nidf=nid AND coden<codeb+1 ORDER BY fid,

enoseq

Theresults of the tests are shown in the secnd column of Table 8-15.

Table 8-15: Vienna test site: internal test with database optimisations

Number SSS SSS+ SSS SSS+ SSS SSS+
Buildings index on index on Index on index on

face face  Face, node face, node
1 15sec 4 sec 10sec 0.50sec 0.33sec 0.12sec
2 30sec 8 sec 17 sec 1.50sec 0.17sec 0.17sec
10 3min 30sc 1min30sec 5.24 s 0.32sc 0.30sc
20 6 min 2min 2min30sec 1min50sec 0.75sc 0.65sc
50 13min 9min 8 min 3min15sec 1.7 sec 1.70sec
200 27 min 22min 28min 13min 7 sec 6.60 s=C
400 56 min 36min 55min 25min 15.85s¢C 1232 sc
600 - - - - 21sc 1950 s
1600 - - - - 50sc -
BID 818 40 sec 9 sec 30sc 0.33sc 0.26 s=c 0.19sc
BID 773 50 sec 10sec 35scC 0.39sc 0.23sc 0.19sc

Database indexing. An optimisation of the database traverse can be achieved by the
indexing schema provided by the RDBMS (MySQL indexes are based on B-treg. The most
visited tables FACE and NODE were indexed and the tests were performed in bath cases
with and without R-tree @ding. The dfect of the R-tree @ding is apparent, i.e it ill
exhibits better performance in the @se of indexing anly the FACE table (see Table 8-8 and
Table 8-16).

Sgit of SQL queries. So far, only the six oneline SQL queries to crege a VRML
document were mnsidered. However, the user could formulate fredy quite complex SQL
statements, involving alot of tables and conditions. This could easily lower the performance
In some a@ses, splitting the SQL statement and modifying the cnditional part can give a
successful improvement. For example, the BODY queries presented above an be separated
into two sub-queries:

FDS (bady):

1. SELECT fid FROM face WHERE bidleft=OBJECT;

2. SELECT fid, enoseq, nid, xc, yc, zc FROM edge, arc, node WHERE fid=FID AND
edge.arcid=arc.arcid AND ((arcbeg=nid AND forback<>0) OR (arcend=nid AND
forback=0)) ORDER BY fid, enoseq

SSS(bady):
1. SELECT fid FROM bodyg WHERE bidg=OBJECT;
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2. SELECT fid, enosegf, nid, xc, yc, zc, bidg FROM face, node WHERE fid=FID AND
nidf=nid ORDER BY fid, enoseqf

FID stands for the set of face identifiers obtained from the first step. The reduction in
traversetimeis esential: theinternal time for one buil ding from Vienna datais 22 secfor 3D
FDS and 0.12 secfor SSS The reorganisation of the SQL statement does not influence the
GUI. It can be formulated as a one-line statement and parsed by the CGI script on the fly.
Theresults $rown in Table 8-16 are ohtained applying this approach. The times obtained for
SSSare even better than the mrresponding ones from the internal query (seeTable 8-14).

Table 8-16: Vienna test site: external tests

Number SSS SSS+ SSS SSS+
Buildings Index on index on

face,node face,node
1 10sec 6 sec 4 sec 4 sec
2 20sec 8 sec 4 sec 4 sec
10 3min 12sec 5sec 5sec
20 5min40sec 1min45sec 5sec 5sec
50 14 min 5min 40 sec 1lsec 8 sec
200 40min 15min51sec 40sec 36sC
400 - 38min20sec 80sc 68 s=C
600 - - 2min 1min40sec
1600 - - 4 min 20 sec -

Threeimportant conclusions can be drawn on the basis of these time performance tests.
Firg, SSShas shown notably better performance than 3D FDS, eg. the time needed to
extract two huildings from 3D FDS is 13 minutes vs. 30 seands for SSS(see Table 8-14).
Second, the R-tree @ding system introduced is effedive esen in the case of relaxed
limitations. Note that the SQL statement uses a right-restrictive andition "coden<codeb+1".
Thisisto say that the mndition becomes lessrestrictive if codeb increases. The dfed of R-
tree will be more dficient with double-sided redtrictions. Third, with the @ntribution of
standard database tedhniques and query optimisations, the time performance of SSS
(respedively SSS) can beimproved to the level needed for web query and visualisation, e.g.
600 buildings can be extracted and displayed on the user's sreen within two minutes (see
Table 8-16). Theresults are cmpatible with other web systems providing geo-information in
the form of 2D maps (i.e. image) lacking interaction. For example, using the ATM locator of
VISA (seeVisa, 199), one can obtain a 2D map o streds (approximately an areaof 1x1km
scale 1:1000) in two minutes. Having the country already spedfied, the HTML document
(the 2D map and list of addresses accepting Visa card) is generated and dsplayed on the
screen in aminute.

8.5 Summary

The implementation isaues discused above demonstrate and verify severd basic concepts
threaded in thisthesis.

The test has contributed to the prodf of the man hypothesis of the thesis. The
performance of SSSin terms of database size and timeis esentially better than 3D FDS. The
improved performance is a @nsequence of the ac's omisson and strict boundary
representation of the geometric and constructive objects. The test has verified that the acs
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have the largest impact on the performance In this context, the modifications of geometric
description, on the basis of which SSSwas derived, are rdevant. The performance test has
demonstrated that the optimisation of the topological modd is gill insufficient and requires
indexing mechanisms. In this resped, the cding system derived from the 3D R-treeactsasa
spatial indexing and improves the performance All the eperiments with SSS have
performed better in terms of time than SSS The tests were caried out on a subset of all the
data that have to be organised for a municipa system. The subset refleds those data, which
were spedfied mostly by technology-driven requirements (see Chapter 4). Thus the tests
contributed to the compl etion of the third reseach ohjedive

The tests exeauted illudrated the overall feasibility of the presented client/server
approach. The user is capable of accessng, querying, editing and visualisng 3D urban data.
Case study 1 has demonstrated that an appropriate GUI (for different users) can be devel oped
in order to spedfy queries and visualise 3D spatial analysis. A number of positive
characteristics of the gproach, flexibility, extensibility and portability, were discussed. The
major negative characteristic of the prototype system is the limited posshiliti es for editing.
The manner of editing tested is database aliting. This asped of the approach needs further
investigations with resped employing Java gplets instead of CGI scripts. The performance
test was of great importance for the vali dation of the system architedure and the amponents
sdeded. The time performance (after a number of optimisations at database level) is
shortened to figures acceptable for the Web. The performance tests provide sufficient
evidenceto consider the seand oljedive of the thesis completed.

Case study 2 tested the @mncept for automatic creation of LOD based on 3D R-tree The
algorithm for 3D R-tree grouping creates conglomerates of objects, which can be used as
coarse LOD for visualisation. On the basis of existing in the database data, the LOD can be
composed in a flexible manner with resped to the needs of each set of data for visuali sation.
The experiments on the dynamic creaion of LOD till have to be completed.

The prototype system was successfully assembled by freevare software cmponents. The
low-cost solution was pedfied as a recommendation for a municipa system aiming a a
variety of clients with numerous different qualifications. Although any of the mmponents of
our system can be replaced, the prototypeis afeasible solution.
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