UNSW

SYDNEY

Integrated and Responsive
Indoor/Outdoor Navigation - Final
Reporting

Zhiyang (Kilam) Lin, Maximilian Keller, Mitko
Aleksandrov, Jack Barton, Binghao Li, Johnson
Xuesong Shen and Sisi Zlatanova

School of Built Environment, School of Minerals and Energy Resources Engineering, School of Civil
and Environmental Engineering

Table of Contents

LAY o1 1 T SO PP U PSP PP PSPPI 4
[Ta 1Ay e e [Tot i o] o HNR TSP TP T S PPPUPRUPPRRPO 4
WWOTKFIOW ..ottt sttt st e b e bt e s be e s bt e e st e et e e bt e ab e e sanesaneeabeenbeenbeennees 4
Robosense Black Pearl LIDAR SCaNNEr REMAIKS......cooueiiiuiiiiiienieeeeiee sttt e sttt e st sb e s e s sneeesreeesneeas 5
Obtaining data from the RS-BPear] SCANNEIcoccuiiiii ettt e e s e e s re e e s s baee e ssaaeee s 7

2 To] =q Lo 10 o l 2(=T1 0 1 Vz- | USRSt 9
VOXEINETE ...ttt et ettt e b e bt e s b et sh et et e e bt e e bt e s bt e sae e ean e e bt e beeabeesheeeaeeereereens 11
Scripts and the hyper-parameters for trainiNg.......ccccuiieciie i e e e 12
Creating SYNTNEtIC data.. ..o i e e e e e s e e e s b e e e e ab e e e e eabeeeeennrees 14
Setup, tiMIiNg and trainiNg FESUIS......ccii i e e e sbe e e e e sre e e s e bee e e enarees 16

R =] U 16
101 = PPt 18
Training results and tests With the real SCaNS........coi i 18
DENSITY COMPULALION ..ttt e e e e s s sttt e e e e e s s bbb eeaeeeeessanantstaaeeessassansrseaaeesssnnsnnns 21
Conclusions and recoOMMENAAtIONScouiiiiiiieeeteee ettt ettt e s e st e st st e b e sbeesbeesnees 23
A Ce o TN ol YL ot (U TS T 24
FULUPE FESEATCTR . ettt ettt ettt e st e s bt e e s bt e e bt e e sabeesbeeesabeeebbeesabeesaneeesabeesnnes 25
REFEIEINCES ..ttt e s e s bt e e a b e e sttt e ab e e s abe e s bt e e sabeesabtesbbeesabee e bt e e sabeesaneeesabeeenres 26

Appendix: Running version of ROS (tested with ROS Noetic on Ubuntu 20.4)ccccoevvvriieneeneenennieenieenieens 27

Abstract

This document summarises the investigations, developments and tests performed within the DGFI 2021 cross faculty
seed project ‘Integrated and Responsive Indoor/Outdoor Navigation’. The project was executed in collaboration
between the School of Built Environment, the School of Minerals and Energy Resources Engineering, the School of
Civil and Environmental Engineering and PAM (pam.co). The project investigated machine learning approaches for
detecting moving pedestrians, using low-cost portable laser scanners. The experiments have clearly demonstrated
that the developed approach is promising, and the proposed systems architecture has the potential to provide real-
time results.

Introduction

To date, many approaches for indoor and outdoor and seamless indoor/outdoor navigation have been investigated.
Many research groups have proposed methods for considering the dimensions of the user, path obstructing objects,
or locomotion modes (walking, driving, flying). However, a little attention has been paid on methods to reflect
dynamic environmental changes or moving objects such as pedestrians or crowds. Some research considering
dynamic obstacles have been reported in the context of disaster management (Wang and Zlatanova 2019) or
autonomous driving (Maurelli et al 2009, Rozenzweig et al 2015, Mozaffari et al 2020). Tracking of pedestrians has
been developed as a separate area of research mostly for studying pedestrian behaviour and mobility patterns
(Scheunert et al 2004, Li et al 2013, Xiao et al 2016, Qian et al 2021). There are many emerging solutions for tracking
moving objects but they have been not considered in routing or evacuation applications for pedestrians and takin
into account the real-world environmental context.

Existing solutions for tracking are strongly device-driven, leaving the corporate customer to maintain their own
loosely-connected spatial documentation for the building’s life-span. Whenever a physical change occurs, whether a
floor layout, or unexpected crowd obstruction, these documents become unfit-for-purpose. Many technologies exist
for scanning interior spaces, but the resulting datasets require expertise/time to process the data and extract the
dynamic modifications. Our solution for monitoring/modelling aims for detecting pedestrians and recording crowd
changes, which obstruct the free navigable area in built environments to include them in the path finding algorithms.

This project concentrated on investigating LiDAR sensors applied in autonomous driving, machine learning (ML), and
advanced 3D modelling and simulation using a game engine for the purpose of estimating free navigable area. To
compensate for large amounts of unstructured point cloud measurements, ML algorithms are used to identify the
pedestrians, compute their density and delineate the free/secure navigation areas. The developed algorithms are
tested in lab environment. Some of them have been also tested in the lower campus around the Red Centre building,
UNSW Kensington campus.

This report is organised as follows. The next section presents the overall system architecture. Section two elaborates
on the Lidar sensors and the data collection. The training of the machine learning model as well as the prediction of
pedestrians is discussed in section three. Section four elaborates on the density computation. Section five provides
further information on possibilities for visualisation and linking the different algorithms for a real-time experiment.

Workflow

The problem we have focussed on, is detecting pedestrians in a specific area and computing the density for a given
period of time. If the density is higher than a given threshold, the area is considered too crowded and is excluded
from the overall available navigation area. The shape of the area can be delineated (not considered in this report)
and given as a polygon geometry (i.e. obstacle) to the routing application. The routing applications can make sure
that that the area is avoided either by deactivating the network edges passing through the obstacle (Wang and
Zlatanova 2020) or by re-computing the network (Aleksandrov et al 2021). In this project we investigated the
machine learning technique to detect the pedestrians. As well-known, ML requires training with a large number of
data sets to be able to provide reasonable predictions. In our experiments we have used KITTI data set (Geiger et al
2012) for the training. Since the duration of the project was during Covid restriction, no real experiments were
completed. Instead, synthetic data sets was created by mimicking the scanner parameters and running an agent-
based simulation in a game engine.

We have selected RoboSense scanners, VoxelNET and Unity3D for collecting data, detecting pedestrians and creatin
synthetic data for the training of VoxelNET. Figure 1 presents the overall system architecture of the developments.
The first block incorporates the data collection and the point cloud processing. The second block produces the
pedestrian prediction result for further processing. The next component is visualisation. Rviz (GUI in ROS) is used as
an example in the workflow, which takes the output (detected pedestrians) for visualisation. Robosense has its
graphical tool which is called “RS Viewer” which can also be used in the workflow. Finally, the “API service” takes the
detected pedestrians and incorporates it into a service for an API call.

Sensor reading & connection ROS integration & .
Machine learning model prediction
RS LiDAR . Rviz or any
(3D point (50::'1:')—' Local PC Leaﬂ?ﬁhTeROS visualisation
cloud) P 9 tools
API service
7 AWS or any

cloud services

Figure 1: Overall system architecture

ROS stands for Robot Operating System, which is an open-source framework for programminga robotic system or
sensors that have ROS compatible driver available (such as Robosense 3DLiDAR). ROS should be installed in Linux
distributions such as Ubuntu 16.04, 18.04 and 20.04. The recommended version is 18.04 and Melodic as they are
compatible with most of the existing packages for ROS and have been tested for obtaining the real scan from the
RoboSense 3D LiDAR.

Robosense Black Pearl LIDAR Scanner Remarks

We have concentrated on LiDAR sensors because they can provide an accurate location and at the same time, they
does not reveal any personal details. Other techniques for localisation such as Wifi (Verbree et al 2013) or CCTV
cameras (Quing et al 2021) require strict data anonymising procedures for privacy protection.

Medium count (~5) of incident laser rays in
vertical direction. Distance from scanner: 6.30m
Insufficient count of incident laser (left pedestrian), 6.50m (right pedestrian).
rays in vertical direction (<3).
Distance to scanner: 10.83m.

High count (>5) of incident laser rays in vertical
direction. Distance from scanner: 2.57m.

Figure 2:Example of a scan obtained with RoboSense Black Perl (RS-Bpearl)

We have selected the RoboSense Black Pearl (RS-Bpearl) 360°x 90° Super Wide Field of View (FOV), Short-range
LIDAR scanner which is designed specifically for blind spotdetection in autonomous vehicles. As such, this sensor can
capture an almost complete hemispherical scan, ideal for capturing complete scenes from wall or ceiling mounted
locations (similar to CCTV camera positioning). The trade-off to the substantial FOV of this sensor is a comparatively
low resolution of these scans which are comprised of only 57,600 points per scan. As a result, the vertical angle
between lasers is fixed at a relatively large ~2.81°. Figure 2 and Figure 3 illustrates a scan, illustrating the number
of points per a pedestrian with respect to the distance to the scanner.

SIS ==

oM 50M 80M 100M

Figure 3: Manufacturer estimates for the number is scans with respect to distance to the scanner.

Tests have shown that the currently trained version of the VoxeINET detection network requires at least a set of
three distinct vertical lasers to be incident on a pedestrian for a successful prediction. The figure below depicts a
visualisation of an example scan conducted with five pedestrians at various distances to the scanner. This example
clearly shows the range limitation of the RS-Bpearl scanner, with a pedestrian who is less than 11m far from the
scanner with only two incident vertical laser rays.

Clearly, to increase the detectable range, several scanners should be used, or the maximum desirablerange of the
detectable pedestrians should be known, and at this distance the vertical separation of laser rays should be such
that at least three laser rays are incident on the average person’s height (Figure 4).

Figure 4: lllustration of pedestrian at the edge of the detectable range of the scanner (14m from scanner).

For example, the scan in Figure 4 was taken at the edge of a grass hill, which presents one benefit of the wide FOV of
the Black Pearl scanner. It can be used in non-planar areas such that the scanningplane does not need to be aligned
with the ground plane, as is the case with high resolution,lower FOV scanners (e.g. RS-LIDAR-16).

Obtaining data from the RS-Bpearl scanner

The RS-Bpearl sensor communicates using the IP/UDP protocol via an Ethernet connection. The UDP protocol packet
is 1290 bytes long and consists of a 1248-byte valid payload and a 42-byte header. The IP address and port number
of RS-Bpearl is set in the factory and the sensor will direct data to a defined computer IP address which is also set in
factory. These addresses can be changed by the user. The sensor can communicate with a computer using the
following protocols:

e MSOP (Main Data Stream Output Protocol). Distance, azimuth and reflectivity datacollected by the sensor
are packed and output to computer.

o DIFOP (Device Information Output Protocol). Monitor the current configurationinformation of the sensor.
e UCWP (User Configuration Write Protocol). User can modify some parameters of thesensor as needed.

RoboSense manufacturer maintains two GitHub repositories for obtaining data from the RS-Bpearl sensor. They
provide a Software Development Kit (SDK), which includes main driver software and support for the Robot Operating
System (ROS1 & ROS2) and protobuf-UDP communication (running on Ubuntu). Additionally, they provide the cross-
platform driver kernel for RoboSense LiDARitself.

Within the project, we have tested the sensor in the ROS (noetic version) environment (Appendix ROS/RS-Lidar Driver
setup guide document) successfully. Additionally, a python script waswritten to directly intercept the UDP data from
the sensor through a socket connecting to the Ethernet port of the computer (Figure 5). The data packet is then
parsed and decoded according to thepacket structure given in the RS-Bpearl user manual. This method was chosen

as a more versatile and lightweight approach compared to the rs-lidar driver.
MSOP Packet (1248 byte)

data packet

42 byte 12*100byte= 1200byte 6byte

Oxffee Oxffee Oxffee Oxffee
(21~30 Azimuth 1 Azimuth 1 Azimuth 6 Azimuth 6
byte time i |
stamp) channeldata 1 channel data 1 channel data 1 channel data 1
|
{ }
channel data 2 [channel data 2 channel data 2 channel data 2
|
channel data . ‘ channel data channel data . channel data ... ’
channel data 16 channel data 16 channeldata 16 channel data 16 ‘
1 | {
‘ |
channeldata17 channel data 17 channel data 17 channeldata 17 ‘
channel data 18 channel data 18 channeldata 18 channeldata 18 ‘
{ |
channel data .. ‘ channel data .. channel data .. channel data ..
1
channel data 31 channel data 31 channel data 31 channeldata 31

{

channel data 32 channel data 32 channel data 32 channel data 32

Figure 5: MSOP Packet structure

Based off the data packet structure outlined in the RoboSense manual, the following figures show screenshots of a
simplified version of the python script used to decode these packets. The program could be further improved for
efficiency, and currently uses two nested loops to iterate through the 12 data blocks containing 32 channels of data
each (every channel is one of the 32 fixed lasers on the scanner). Comments are included throughout this code
(Figure 6).

1 #Omega are the vertical angles of lasers (fixed and given by laser ID - ©0-32)

2 omega =
[89.5,81.0625,78.25,72.625,67,61.375,55.75,50.125,86.6875,83.875,75.4375,69.8125, 64.1875,58.5625,52.9375, 47
.3125,44.5,38.875,33.25,27.625,22,16.375,10.75,5.125,41.6875,36.0625,30.4375,24.8125,19.1875,13.5625,7
.9375,2.3125]

3 #Actual value = readout * resolution

4 distanceResolution = 0.005

5 azimuthResolution = 0.01

6

7

A function to convert the spherical data array to cartesian data array
4 def spherical2cartesian(frameData):
9 distance = frameDatal:,0]

10 azimuth = frameDatal:,1]

1 omega = frameDatal:,2]

12 intensity = frameDatal[:,3]

13

14 dist_cos = distance * numpy.cos(omega)
15 pointX = dist_cos * numpy.sin(azimuth)
16 pointY = dist_cos * numpy.cos(azimuth)
17 pointZ = distance * numpy.sin(omega)
18 frameCartesian = numpy.asarray([pointX,pointY,pointZ,intensity]).transpose()
19

20 return frameCartesian

22 # Open a connection using a python socket to the port associated with the sensor

23 sock = socket.socket(socket.AF_INET, # Internet
24 socket.SOCK_DGRAM) # UDP

25 sock.bind((UDP_IP, UDP_PORT))

26

27 # Main loop
28 while True:

29 # Receive a data packet

30 data, addr = sock.recvfrom(1248) # Max packet size in bytes (buffer)

N # Header is the first 8 bytes

32 header = data[@:8]

33 # Timestamp for each packet is bytes 20-30

34 timeStamp = datal[20:30]

35

36 # Loop through the 12 datablocks in one packet

37 for BlockNumber in range(®,12):

38 blockStartIndex = 42+BlockNumber*100

39 blockEndIndex = 142+BlockNumber*100

40

41 # Obtain the pointcloud data (each data block has its own header too)

42 dataBlock = datalblockStartIndex:blockEndIndex]

43

44 # Obtain Azimuth for the data Block

45 azimuthbytel = dataBlock[2]

46 azimuthbyte2 = dataBlock([3]

47 # Convert the raw value to angle

48 azimuth = (azimuthbytelx256+azimuthbyte2)%azimuthResolution

49

50 # This condition checks if a new scan has begun

51 # The data should be saved and sent as a complete frame here

52 if (prevAzimuth>azimuth):

53 # Convert to cartesian coordinates

54 frameCartesian = spherical2cartesian(frameData)

55 # Save an ASCII file with the frame contents

56 numpy .savetxt('CaptureFrame{}.csv'.format(frameCounter), frameCartesian, delimiter=",")

57 # Clear the data array for the next frame

58 frameData = []

59 # Increment a counter to keep track of frames

60 frameCounter += 1

61

62 for channelNum in range(@,32):

63 # Calulate the offsets of the distance/intensity data for each channel

64 channelStartIndex = 4 + channelNumx3

65 channelEndIndex = channelStartIndex + 3

66 # Copy data for one individual channel

67 channelData = dataBlock[channelStartIndex:channelEndIndex]

68 # Copy distance high and low byte

69 distancebytel = int(channelDatal[@])

70 distancebyte2 = int(channelDatal[1])

7 distance = (distancebytelx256 + distancebyte2)xdistanceResolution

72 intensity = int(channelData[2])

73

74 # Validate each individual point (intensity and distance)

75 if (cycle == @ and distance < MAX_DISTANCE and intensity > MIN_INTENSITY):

76 frameData.append([distance, numpy.deg2rad(azimuth+delta), numpy.deg2rad(omegalchannelNum]),
intensity])

77 # Keep Track of previous azimuth to determine transition to beginning of new frame

78 prevAzimuth = azimuth

Figure 6: Simplified version of python script to decode UDP packets.

Improvements to the efficiency of the python code could be made by compiling the script using Numba to
translate the python and NumPy functions into fast machine code. One version of this script was
implemented entirely using NumPy functions to make this possible. Alternatively, the script could be re-
written in a faster language such as C++.

Background Removal

The next step in processing the point clouds is extracting the moving objects by removing all static
background. The most straightforward removal technique was cropping off the background points. This
could be easily done since the sensor is stationary and the approximate measurements of the scene were
testing data is obtained from is known. A simple python script was also used to crop, transform and re-
orient the axes of point cloud frames (Figure 7).

import os

import struct
import numpy as np
import csv

import math

os.chdir("SensorData/")
print(os.getcwd())

rotation_degrees = 45

rotation_radians = np.radians(rotation_degrees)

rotation_axis = np.array([1, @, @])

A =
[[1,0,0]1,[0,np.cos(rotation_radians),-np.sin(rotation_radians)],
[@,np.sin(rotation_radians),np.cos(rotation_radians)]]

for root, dirs, files in os.walk("."):
for file in files:
data = np.loadtxt(file, dtype=np.float32, delimiter=",")

#Rotation
datal:,:3] = np.matmul(datal:,:31, A)
datal:,2] = -1 * datal:,2]

#Axes switching

x = datal:,0].copy()
y = datal:,1].copy()
datal:,1] = x
datal[:,8] =y

#Cropping
rowIndex = @
array = []
for row in data:
#Crop if x > 108.62m or z > 0.5m or z < -2.3m or |y| > x - (98 degree FOV)
if (row[@] > 18.62 or row[2] > 8.5 or row[2] < -2.3 or abs(row[1]) >
row[@]):
array.append(rowIndex)
rowIndex += 1
data = np.delete(data, array, axis=0)

#File renaming

Number = file.replace("CaptureFrame","")
Number = Number.replace(".csv","")
newFileName = Number.zfill(é) + ".txt"

#File Saving

np.savetxt(newFileName, data, delimiter=",")
print("output:", newFileName)

Figure 7: Background removal and axes orientation

The data loaded from the files for the input of this script are in the form [x,y,z,intensity]. Rotation is applied
because the field data was obtained using the sensor at a 45° angle from horizontal. The transformation
rotation matrix A is used to rotate the point cloud. Furthermore, the point cloud is cropped into a 90 degree
FOV by removing all points whichsatisfy the condition abs(y) > x in order to obtain a similar FOV as the
VoxelNET model (Figure 8).

IylI>x ¥y

Figure 8: Blue region showing cropped data where [y| > x.forward direction is positive x-axis.

Another approach to remove the background which was initially attempted included capturing a
“background” frame with the scene and no pedestrians. Every scanned frame wasthen compared to this
background frame by comparing every point in the background to every point in the newly scanned frame.
If a point already existed in the background, it is deleted (Figure 9). This method is not very efficient and
hence, the processing time took too long for it to be feasible for real-time applications. Unfortunately, the
RS-BPearl sensor starts recording each frame at inconsistent azimuth values (starting at slightly different
values close to zero degrees every scan) which means that any background comparison must account for
this shift and any missing points which could again shift the data. A sorting algorithm could be used to align
the azimuth valuesof the background data and incoming frames, such that an efficient matrix comparison
can be done instead.

#Check frameData against backgroundData
def removeBackground(frameData):
#Array to store final result
foregroundData = []
#Array to store indices of background points to delete
backgroundIndexList = []
#Numerical tolerance values for distance, azimuth and omega
filter = numpy.asarray([distanceTolerance, azimuthTolerance, omegaTolerance])
#Compare every point in frame to every point in background
for pointl in frameData:
for point2 in background:
#Compare the absolute difference of all three quantities
if ((abs((pointl-point2)) < [distanceTolerance, azimuthTolerance,
omegaTolerance, 100]).all()):
#If the point is a backgroud point, save its inedex
backgroundIndexList.append(point1)
#Delete all background points using their indices
foregroundData = numpy.delete(frameData, backgroundIndexList, @)
#Return the array of foreground data
return numpy.asarray(foregroundData)

Figure 9: Simple point comparison background removal function.

Error! Reference source not found. illustrates the result after applying the background removal and axes
orientation and Figure 11 contains pictures of the experimental set up. Due to lockdown travel restrictions,
the experiments were performed on a farm.

Figure 10: Point cloud frame (Capture 2 -> Frame 69) before and after cropping to VoxeINET FOV and background removal.

Figure 11: Paddock experiment set-up

Voxelnet

For the Machine learning several models were investigated. The selection of VoxelNET
(https://www.mining3.com/research/voxelnet/) is the result of trial and error of different point cloud
processing techniques, machine learning methods and deep learning models. Since the project is about the
detection of pedestrians for the purpose of computing density, the ability to classifywhether a cluster of the
point cloud is a pedestrian or not is important. There is a wide range of existing methods, some of them are
purely based on point cloud processing and statisticalanalysis (Scheunert et al 2004, Zhao et al 2005, Xiao et
al 2016,), whilst some are based on the supervised training of a machine learning or deep neural network
(Li et al 2009, Mozaffari et al 2020).

We initially experimented with a variety of traditional machine learning methods, such as Support Vector
Machines (SVM) and K-nearest neighbour clustering, however, the results were not satisfactory due to the
lack of features from the training data and required further feature engineering to better improve the result,
due to the time limit, we instead change to a machine learning approach.

We then concentrated on two machine learning approaches which are Voxelnet and PointPillars. Several
attempts were made to adapt the two Github repository codes to our application, however, only VoxelNET
was successfully tailored. PointPillar is still an option but requires some more effort to train the network
compared to that of Voxelnet.

https://www.mining3.com/research/voxelnet/

Scripts and the hyper-parameters for training

The script for running prediction and training has already been documented in the workstation, as well as which folder
the training and prediction files should be put into alongwith the instructions. The parameters for the training are shown
in Figure 12.

--learning_rate=0.01
small_addon_for_BCE=le-6
--max_gradient_nor

summary_val_inte

--summary_flush_interval=5 \
--ckpt_max_keep=20 \

parser = argparse.ArgumentParser()

parser.add_argument (

parser.add_argument(
parser. add_argument (

parser. add_argument("--1 ing
parser.add_argument("-- _BCE", th a cross entropy for the loss”, type=float)
parser. add_argument (

parser. add_argument

parser. add_argument

parser. add_argument ("~

parser. add_argument("- o e ave the eatmaps, o f the te es or . type=str2bool)
parser.add_argument("-
parser.add_argument ("~
parser.add_argument ("

X , type-int)
parser. add_argument (" --sumna i , default=-1,
parser. add_argument("--ckpt_max_keep”, default=11, help="F

Figure 12: Training parameters for VoxelNet

The “Strategy” parameter describes how the dataset will be distributed with the available GPUs in the PC or
workstation. The distribution can be parallelised, meaning using multiple GPUstraining simultaneously, or centralised,
meaning only use single GPU will be applied to perform training. The default is considered sufficient for the training.

The “Batch_size” parameter is defined as the number of training samples in each batch. In machine learning lingo, “an
epoch” means when all the training samples have been consumed, and “Batch_size” means the number of training
samples on the GPU for one forward and backward pass of the training model. The equation for calculating the number of
required steps to consume all the training samples is defined in Eq. (2).

Total number of training samples
Batch size (2)

Number of steps =

The “n_epochs” parameter, as mentioned above, is the number of times for all the training samples are passed through
the model, for instance, 1000 training samples, 3 epochs. A batch size of 2 means that the number of required steps for
1 epoch is 1000/2 = 500 steps, which means, after 500 steps, all the training samples will have already been consumed
and 1 epochis completed, and 2 more epochs are required as we set the number of epochs to be 3.

The “learning_rate” parameter is defined as the rate at which the weights of the model is updated during the training, as
the model learns by updating the weights to maximise the probability of producing the correct output. As mentioned in
the VoxelNET paper (Zhou 2017),Stochastic Gradient Descent(SGD) optimiser is used for pedestrian training and it is also
applied in this project. The learning rate is defined by the symbol 7, the weight of the model is defined as w, and the loss
function is defined as E, the weights updating rule is defined in Eq. (3), the SGD works by taking the number of training
samples defined by the batch size asone update of the weight of the model, this process is repeated until the number of
epochs is reached or training is interrupted.

8E
aw (3)

w=w—

Typically, different loss functions will have different effects on the model during the training.The “small_addon_for_BCE”
parameter is a small value that is added to the BCE (Binary Cross- Entropy) loss function. The original paper did not
mention anything related to this addon value, for this project, the default value is more than enough.

The “max_gradient_norm” parameter defines the maximum norm for the vector gradient calculated from the loss
function which can not be exceeded during the training of the model. Normally this value has to do with the gradient
optimiser and is decided by user choice. he “alpha_bce”(a) and “beta_bce” () parameters refer to the coefficient in the
loss functiondesigned by the author of VoxelNet. The loss function E defined by the Voxlent is described in Eq. (4).

1 1 1
E Ea(pF%,1) + E Eqs(p;™,0) + E Ereg(us u;
Npas E cls (p;) 'Ban-g : cls (pj } Npos [. rag(it-g H.E) (4)

E=ua

Equation (3) defined the loss function for training the Voxelnetl model. The object of interest (OOI), such as pedestrian,
has the ground-truth value of 1 and O for objects that are not interested. The loss function E consists of normalised
classification loss function E.s and regression loss function Ey .4 which are trained simultaneously. Es is for classifying
the 3D bounding boxes. p?* and p;™? are the softmax output, which is the output from an activation function in
Machine Learning lingo, for positive and negative anchors respectively. The @ and 8 are constants for the relative
importance of the classified object, which are application dependent, from the sample values shown in Figure 9, « is
higher and more important than [as we focused more on the pedestrians. Nyos and Nre4 are the number of positive and
negative anchors for Region Proposal Network(RPN).

The “huber_delta” is a value that is used to determine the loss for the regression loss function E;.g, in the implementation,
the Huber loss function is used as the regression loss function, which is defined in Eq. (5).

Erog(Us i) = [(fﬁf__ﬂ_ ;J{ ||:: - ::|| _ 23;):;:3;::;)

u; and u* are the, residual vector and its ground truth for training, from the original paper, u; u* € R7 contained 7
regression target values corresponding to the difference for x, y, z, 1, w, h, 8, which are the centre location of the 3D
bounding boxes (x, y, z), the length, width and the height of the 3D bounding boxes (I, w, h) and the yaw rotation angle
() around Z-axis. Note that most of these values are already defined in the implementation. For training, only
parameters that are exposed to the user, as shown in Figure 12, can be adjusted.

The “dump_vis” parameter is defined as a Boolean value to save the visualisation for the dump test, the provided Github
codebase is designed such that the model is validated at a certain interval and visualisation of the validated output will
be produced and the user can choose to save depending on this parameter.

The “data_root_dir” parameter is the directory in which all the training and validatingsamples reside. However, the
training script “train.py” never used this parameter for some reason.

The “model_dir” parameter is the directory into which the trained model will be saved. This directory contains the
visualisation for the model prediction and the training logs for experimenting with different training methods and
training related hyper-parameters.

The “model_name” parameter is the name of the model that is trained by executing the command “Itrain.py”, this
parameter is used to distinguish different models and comparisonsamongst different models can be made.

The “dump_test_interval” parameter defines the interval for which the validation is performed, according to the
instruction, validation of the model is performed at the numberof epochs defined by this parameter.

The “summary_interval” parameters define the interval for saving the training log into the “model_dir” directory, this is
useful as later on training log can be used for experimenting with different configurations for the training of the model.
According to the script “train.py”,the interval refers to the number of steps, and the training summary is logged after a
certainnumber of predefined values for the parameter.

The “summary_val_interval” parameter refers to the interval for validation and logged summary of the training.
According to the script “train.py”, the interval is defined as a numberof steps, similar to “summary_interval”.

The “summary_flush_interval” parameter refers to the interval for flushing out the training summary of the training. The
word “Flush” here refers to saving the summery into the folder.

As the python library which the script uses is Tensorflow 2.0 and it is capable of flushing out the history of training
summary at a prefined interval to any buffer for storage. Theoretically, “summary_interval” defines how frequent the
summary is stored into the buffer, and “summary_flush_interval defines how frequent the buffer is flushed out for
storage.

The “ckpt_max_keep” parameter is defined as the maximum number of checkpoints for the training of the model should
keep during the training. Tensorflow is capable of continuing thetraining from the last checkpoint it is left over.

Note that the “model_dir” is the directory in which the model is stored, the “model_name” is also important and it is
used to distinguish which model to use for the prediction.

Additionally, to be able to detect more pedestrians, a hyper-parameter called “RPN_NMS_POST_TOPK” in “config.py” is
adjusted. This parameter is set to be 20 initially, which we changed to a higher value (e.g., 50, 60) for detecting more
pedestrians. The name of the parameter came from Region Proposal Network(RPN) Non-Maximum
Suppression(NMS)_POST_TOPK(top k 3D bounding boxes).

Overall, the adjustable parameters are shown in Figure 12 and the explanation for each parameter is provided above.
We have to adapt the parameters “n_epochs”, “batch_size”, “learning_rate”, “max_gradient_norm”, “alpha_bce”,
“beta_bce” and “huber_delta”, these are training related, the rest are for file storage. The suggested values are shown in
Figure 12.

Creating synthetic data
There are several disadvantages of using labelled data based on real scanning to create a ML model that would give you
realistic results in different scenarios, which are as follows:

e Costly process — manual work

o Imperfectly labelled data

e Slow process

e Limited scenarios diversity

e Not able to detect pedestrians from a few points

Using synthetic data gives you the freedom to model scenarios and data (i.e., point clouds) collection process in the way
you would like. Moreover, we can resolve all issues that are presented above. This allows us to improve results in the
detection of objects, in our case pedestrians.

To collect point clouds data, we use Unity game engines. To collect synthetic data in Unity, it is important to have
pedestrian simulation and point clouds scanning process.

For the pedestrian simulation, we use the most prominent models are based on social forces (Helbing & Molnar, 1995).
This model can recreate certain phenomena such as queue formation and arching, shock waves and bottleneck effect.

The model integrates into pedestrians’ movements the self-driven force fi, the forces by other pedestrians fl-j, and fio

represents the force by obstacles such walls, pillars, furniture, etc. The total force fl applied on a pedestrian can be
formulated as Eq. (1).

https://www.tensorflow.org/api_docs/python/tf/summary/flush

—des_ =
= Ui —V;

fi=

+Zi¢jﬁj+2iofo (6)

T

Regarding the data collection process, we use the raycasting function that Unity provides to detect objects in a specific
direction. We cast uniformly rays in the same way as a scanner would do (Figure 13).

Figure 13. Scanning process in Unity from one point

We can place the scanner at any given place in the scene and start detecting points that hit animated pedestrians (Figure
14). The important part is that pedestrians can be in different postures, and we can detect diverse point clouds of them.
Point clouds can clearly resemble the pedestrian body shapes, but not more than this (Figure 15).

Figure 14. Point clouds detection using pedestrian simulations

Figure 15. Point clouds of pedestrians

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Apart from the point clouds of pedestrians, we need to calculate the 7 parameters which VoxelNet requires. Thus, we
need to identify a centroid and bounding box for each pedestrian as well as the rotation of the box. We use all vertices
representing an agent in the scene to identify better the bounding box, which will also give us the centroid. For the
rotation, we use the direction of movement of pedestrians (Figure 16). In this way, we can almost perfectly identify
bounding boxes and their properties representing pedestrians, which is impossible if the work is done manually.

Figure 16. Rotated boxes and rays hitting pedestrians
We need to mention that we can collect 1000 datasets in 1 hour which is way quicker than what is possible
manually.

Setup, timing and training results

Setup

There are 5 synthetic datasets and 1 KITTI dataset with all the pedestrians extracted from theoriginal dataset for training,
some of them need to have the axis swapped. As shown in Figure 17, the Z-axis in the point cloud coordinate is the
negative Y-axis in the camera coordinate, the Y-axis in the point cloud coordinate is the negative X-axis in camera
coordinate etc. The input data follows the KITTI data format. The imported 3D point cloud is unstructured, which is an N-
by-4 array with each point havingx,y,z, intensity, the array is packed in “.bin”(binary format) and in little-endian.

Velodyne HDL-64E Laserscanner

Figure 17: Axis for point cloud and camera coordinate frame

The output isthe predicted number of pedestrians given the 3D point cloud in KITTI format. Sample predicted output and
the definition of each column from left to right is shown in Figure 18.

Pedestrian 0.0000 0.0000 0.0000 221.0000 162.0000 245.0000 219.0000 1.8986 0.4407 0.7711 -12.6334 1.4942 24.1367 1.4806 1.0000
Pedestrian 0.0000 0.0000 0.0000 283.0000 169.0000 311.0000 232.0000 1.7923 0.6610 0.9094 -9.1211 1.6455 21.0160 1.2275 0.9993
Pedestrian 0.0000 0.0000 0.0000 228.0000 171.0000 259.0000 222.0000 1.6711 0.6162 0.8490 -12.1851 1.5623 23.9570 1.5516 0.9988
Pedestrian 0.0000 0.0000 0.0000 549.0000 167.0000 582.0000 226.0000 1.7748 0.6879 0.9288 -1.3619 1.5693 22.2030 1.1054 0.9978
Pedestrian 0.0000 0.0000 0.0000 383.0000 169.0000 413.0000 228.0000 1.7796 0.6856 0.9134 -6.5448 1.6182 22.2617 1.0722 0.9974
Pedestrian 0.0000 0.0000 0.0000 206.0000 164.0000 236.0000 222.0000 1.8566 0.6106 0.9405 -12.6398 1.5291 23.4308 1.3744 0.9962
Pedestrian 0.0000 0.0000 0.0000 404.0000 163.0000 437.0000 232.0000 1.8349 0.6868 0.9260 -5.1405 1.5531 19.6257 1.5130 0.9943

Num elements Parameter name Description Type Range Example
The class to which the object ~ Person,
al Class names Belora String N/A car,
85 Road_Sign
1 Truncation How much of the object has left Float 0.0,0.1 0.0
image boundaries
Occlusion state [O = fully visible, 1 =
al Occlusion partly visible, 2 = largely occluded, 3 Integer [0,3] 2
= unknown].
1 Alpha Observation Angle of object Float [-pi, pi] 0.146
: p [0 to image width],[0 to
Holindine bax i . R Floatl0 ace height], [top.left, 100 120
4 coordinates: [xmin, Location of the object in the image based 2 2 [.
2 ; 3 image_width], [bottom_right, 180 160
ymin, xmax, ymax] index) g :
image_height]
1 1
3 D HIEREION nght. Wl\dth length of the object Float N/A 1.65,1.67,
(in meters) 3.64
3 {ocation 3-D object location x, Y. zin'camera Float N/A -0.65,1.71,
coordinates (in meters) 46.7
1 Rotation.y Rotation ry around the Y-axis in Float o pi) 159

camera coordinates

Figure 18: Sample predicted output from Voxelnet and the KITTI format (Preparing the Input Data Structure — Transfer Learning Toolkit 2.0
documentation 2011)

Four folders are important for the “training” and “validation” subfolder separately, which are “calib”, “image_2",
“label_2" and “velodyne”.

The “calib” folder contains all the calibration files for each training sample as later this file can be used for visualisation
purposes. The calibration file needs to be carefully constructed. A sample calibration file for the synthetic data is
shown in Figure 199. The relevant parameters are “P2”, “RO_rect” and “Tr_velo_to_cam”, “P2” is a 3-by-4 projection
matrix that projects a point in the rectified reference camera coordinate(camera-0) onto the camera-2 image
coordinate, “RO_rect” is the rotation matrix to rectify the rotation for the referenced camera coordinate such that
multiple images lie on the same plane, and “Tr_velo_to_cam” is a projection matrix which maps a point in the 3D point
cloud coordinate to reference coordinate (camera-0).

P0O: 1.046457 0000 3.48819 0000 1.0050125 0.60150375
P1: 1.046457 000 0 3.48819 0 0 0 0 1.0050125 0.60150375
P2: 1.046457 0000 3.48819 000 0 1.0050125 0.60150375
P3: 1.046457 000 0 3.48819 0 0 0 0 1.0050125 0.60150375
RO_rect: 100010001

Tr_velo_to_cam: 0-10000-101000

Tr_imu_to_velo: 1000010000

Figure 19: Sample calibration file

The “image_2" folder contains all the images captured by camera number 2, according to theKITTI setup. Later on, the 2D
boxes can be projected onto the image, however, this is not applicable as 3D boxes are predicted from the network so
we can only visualise the labelled training data but not predicted data.

The “label_2” folder contains all the labels for the Object of interest (OOI) in one frame or training sample which defines
what are the positive and negative objects with respect to thenetwork, this has to follow the KITTI format as mentioned
above.

http://www.cvlibs.net/datasets/kitti/setup.php

The “velodyne” folder contains all the 3D point clouds which are taken as the input to the VoxelNet, note that all the 3D
point clouds should be converted to .bin (binary) and in little- endian format. Note that the number of files in each of
the four folders should be identical, meaning the number of files in “calib” should be equal to “label_2”, “image_2" and
“velodyne”.

The setup instructions for training has been documented in a Jupyter notebook on the workstation, the timing for
training the model depends on the number of epochs passed in when running the “!python train.py” command.

Timing

There are 5 synthetic datasets and 1 KITTI dataset with all the pedestrians extracted from theoriginal dataset. The split
into training and validation is 80% and 20%. That is, roughly 932 training samples and 233 validation samples. This ratio
could be differentdepending on the quality of the training sample. As a rule of thumb, a ratio of 9:1, 8:2, 7:3, 6:4 is good
for training the model. The more the training samples, the longer the training willtake in each epoch.

Normally, 8 - 14 hours of training time will be the minimum required for the training to be successful for 1165 samples.
These estimates are for the KITTI dataset with pedestrians extracted from thetraining samples. For the synthetic data
created with Unity, 6 — 12 hours of training is required for the training to be successful for 1165 samples, because the
synthetic data has fewer points than the KITTI dataset. However, this is just empirically determined, the actual timing
will depend on the number of training samples, number of epochs, number of batches and number of GPUs that is
currentlyavailable.

The timing of training the model also depends on the tolerance range of a specific application,for instance, in this project.
A classification error of 0.1378 and a regression error of 0.6867is reached after 700 steps, which can be considered as a
good indicator of the model is trainedsuccessfully.

Training results and tests with the real scans

The synthetic datasets have difference in the number of points to be considered as one pedestrian with similar
environmental complexity. This is related to the automated labelling process. In the last synthetic dataset, the number
of labelled pedestrians are significantly increased compared to the previous datasets to test whether the model can
detect more pedestrians. KITTI dataset is also used for training and performing testing on the synthetic dataset to test
the robustness of the training.

The training result of the VoxelNet model on the synthetic dataset is shown in Figure 19Figure 20. Note that the curves
are smoothed out for better visualisation. Two important metrics are “train/cls_loss” and “train/reg_loss”, the former is
the weighted average classification loss from the first two terms in Eq. (3). The classification loss gradually dropped after
250 steps from around 0.865 to 0.845, the regression loss has some fluctuations and a little bit of rising at the beginning
of the training, subsequently slowly decreased from 0.18 to 0.14.

However, the “cls_neg loss” has an unstable tendency, which increases from 0.7 to 0.8 indicating the network may be
erroneous in classifying the background due to crowded scenes. This behaviour is yet to be explored further. Even if the
unexpected behaviour of “cls_neg_loss”, the overall loss “train/loss” is still decreased from 1.03 to 0.99.

train

train/cls_loss

train/cls_neg_loss

train/cls_pos_loss

tag: train/cls_loss tag: train/cls_neg_loss tag: train/cls_pos_loss
N ~
N ~
~— _. ™~ s
. \\15
4 . = s
aE El o =EE o EE
train/loss train/reg_loss
tag: train/loss tag: train/reg_loss
AT
A \ N > &
AVl |
| S | B 0 B
— ﬁ\\‘ X e
% =)
)))
HDEE DEE
Figure 20: Training results for the synthetic data set
validate
validate/cls_loss validate/cls_neg_loss validate/cls_pos_loss
tag: validate/cls_loss tag: validate/cls_neg_loss tag: validate/cls_pos_loss
- . s |
i
! _. =
N i =
4 ~e L
0 1 2 250 i) 20 2)
o EE o ERE o EE
validate/loss validate/reg_loss
tag: validate/loss tag: validate/reg_loss
A " I\
)4 AR .l 8 I Vo dn
¥ W
N TINGE
p VAR N
e x -
@ 4
))]))
w ER i —

Figure 21: Validation result for synthetic dataset

The validation result of the VoxelNet model on the synthetic dataset is shown in Figure 21. Similar to the training
result, the two important metrics are “validate/cls_loss” and “validate/reg_loss”. As expected, they both have a
similar response to that of the corresponding “train/cls_loss” and “train/reg_loss”, as they are evaluated in every 5
steps, according to Figure 12. The “cls_neg_loss” is also unstable, which increases from 0.7 to 0.8, this phenomenon is
similar to “train/cls_neg_loss” due to the crowded scenes in the dataset,meaning the network has difficulties classifying

the background. The overall loss “validate/loss” is similar to “train/loss” which drops from 1.04 to 0.98, note that the loss
wasstill decreasing after 250 steps.

train

train/cls_loss
tag: train/cls_loss

train/cls_neg_loss

train/cls_pos_loss

tag: train/cls_neg_loss tag: train/cls_pos_loss
\
\
\
©
-
] ro -]
e = e = e =

train/loss

train/reg_loss
tag: train/loss

tag: train/reg_loss

fin
[-
]}

[

Figure 22: Training result for KITTI dataset

The VoxleNET model is also trained using the KITTI dataset with all thepedestrians extracted. The training result for the
KITTI data set is shown in Figure 22. Similarto the training result for the synthetic dataset, “train/class_loss” drops from
0.85 to 0.26 after 700 steps. Note that “train/cls_neg_loss” also drops as opposed to Figure 20, in which the loss is
increased and is unstable. However, “train/reg_loss seemed to struggle to crossover the 0.14 baseline and have
oscillatory behaviour. The probable reason is the limit of the error for the dataset or the configurations of the hyper-

parameters shown in Figure 12. Overall, “train/loss” presents a healthy behaviour of a normal machine learning training

curveand the results are expected and reasonable.
validate

validate/cls_loss

validate/cls_neg_loss
tag: validate/cls_loss

validate/cls_pos_loss
tag: validate/cls_neg_loss

tag: validate/cls_pos_loss

ra
Ld

(I
i

validate/reg_loss
tag: validate/reg_loss

ra
La

validate/loss
tag: validate/loss

ra

I
|
|

H

(i
)
(i
)

Figure 23: Validation result for KITTI dataset

The validation result for the KITTI dataset is shown in Figure 23. The validation curves are similar to that of the training

curves, except the “validation/reg_loss” which is a jigsaw-like shape. This is typically due to the biased in the validation
dataset, as each time the network istrained with 932 samples but only evaluated on 2 or 3 validation samples, as
indicated by thebatch_size. This is somewhat implied that the small portion of the validation sample is properly labelled
and trusted by the network. Note that the visualisation tool is called tensorboard.

PESSSHILR"
A fiem

Pedestrian

Figure 24: Sample predicted result from the trained VoxelNET model

Several tests against the synthetic and KITTI dataset have been performed after the training of the VoxelNET model. The
results are shown in Figure 24 along with the 3D bounding boxes and the label. Some false positively detected
pedestrians included in the result due to the occlusion and how the network is trained. Furthermore, the threshold
“RPN_NMS_POST_TOPK” and training parameters also play an important when training the VoxelNet. As visible on
Figure 24, occasionally more than one box is needed to cover one pedestrian. This effect comes from the value of
“RPN_NMS_POST_TOPK” because the network tries to produce the top k number of 3D bounding boxes.

The input 3D point cloud for the prediction is from KITTI dataset and synthesised dataset. No tests have been completed
with real data directly from RS-Bpearl.

Density computation

The density of people can be calculated using the following formula,

Crowdedness o< J]IE (7)

Where, n — number of pedestrians (boxes), n — normalisation coefficient, which depends on the area and A represents
the specific area.

The number of “boxes” that are required in the visible area to be able to compute the density of people has to be greater
than or equal to 0. This number is predicted through the Voxelnet,however, some checks on the predicted number should
be performed before the density calculation such as an abnormal increase or decrease in a short period of time. However,
this is considered to be application dependent. The software which is used for the density computation is written in
Matlab script “densityCalculation.m”, some sample demonstrationsof the results are included in Figure 25.

https://www.tensorflow.org/tensorboard

Pedestrian(outside of ROI)

.
Pedestrian(inside of ROI)

* RSLDAR
—14
= f
° 5 o ’f
e —
Rt 2 . [1.2
L]) °
L] © - ‘f" 1
e |
. L - /
08 -
oo . /‘ £
/ x
e [~ 06
T2 ~04
N
0
— * =02
i .
T e, G
£v 60 40 o e
20 0 o .] 7—0
60
y(m) £0

Figure 25: Visualisation of labelled training data

The labelled training data is visible in Figure 25. The FOV in this case is the triangular-like shape and is referred to as
“Region Of Interest”(ROI), the red dots represent pedestrians that are currently within the FOV and included in the
density calculation, whereas the blue dots represent those excluded. The heatmap that correspondsto Figure 25 is

shown in Figure 26. The axes are in metres, the crowed the area is, more reddish colour it is indicated.

-21.7294

vim)

1.06139

x(m)

Figure 26: Heatmap of the crowdedness

272128
048578

A plot of the computed density over time is shown in Figure 27. A running average is maintained, and all historical data

were plotted.

Crowdedness estimate

0025 — lH‘

1 ||)1 |
H " “v il ‘ w‘ ‘\HH u\‘ Ll ﬂw I‘H l|\ HH”‘I" TJJ l}ﬂ”\ }“ w‘ I’M

ik \1 ‘1‘“! I ‘ U "“ m il H I ' | ‘“'\ H
| ”M Ml HH \‘ H -’*“l M | \ ‘ ‘l i . “MH} M H\ H (L
.W | 7

0015+ |

Wl\

Crowd

Figure 27: Density of crowd vs. time plot

Conclusions and recommendations

This project has experimented with several algorithms for detecting pedestrians using RS-Bpearl. Due to COVID-19
restrictions, the experiments are completed with existing training data sets and synthetic data (simulating the RS-Bpearl
scanner). Nevertheless, we believe performed tests and investigations confirmed the proposed system architecture

(Figure 1) is viable.

RS-Bpearl for non-planar scanning locations e.g stairs or

\\// hills to utilise the Sensor’s hemispherical FOV

5 1 D) RS-LIDAR-16 or other horizontal scanners for large open planar
(() areas (smaller FOV but better resolution).

Figure 28: Example of using two sensors (A and B) to cover the open area at front of Red Centre.

System Architecture

The RS-Bpearl LiDAR sensor is currently the only sensor that we used and consider as input to the entire workflow. As
mentioned previously the sensor has a limited range and therefore a better option will be to use several sensors to
cover a larger space and produce more dense point cloud. It is also recommendable to investigate other scanners. For
example, The RS-LIDAR-16 (Vertical FOV +/- 15°) and/or RS-LIDAR-M1 (Vertical FOV +/- 12.5%) could both be mounted a
couple meters off the ground (above head height of people) in large open areas (such as the UNSW walkway) with their
FOV in line with the ground plane. Figure 288 illustrates an configuration of two sensors for the area at from of the Red
Centre The RS-Bpearl is more suited to walkways, stairs, hills or other obscure areas which make use of its wide FOV.

If more than one scanner is used, multiple RoboSense sensors could be connected using hard-wired ethernet cables or
using internet routers for wireless data transfer from each sensor toa common computer. We have tested the WLAN
communication by using an internet router to directly transmit the MSOP data from the B-Pearl sensor via the UDP (User
Datagram Protocol) protocol which is utilised by the scanner. Figure 29 illustrates the LANand WLAN connection that
was tested with the sensor.

LAN:
.)
glack ETHERNET Netwoike |V\.M:'x- ... Receiving
eal g Computer
Sensor
1P: 192.168.1.200 IP: 192.168.1.102
PORT: 6699 PORT: 6699

WLAN:

Black ETHERNET WiFI/ETHERNET o
Network NTE > Receiving
Pearl g INTERNET Computer
Router Router P
Sensor
IP: 192.168.1.200 IP: 192.168.1.XXX IP: 192.168.1. XXX IP: 192.168.1.102
PORT: 6699 PORT: XXXX PORT: XXXX PORT: 6699
PORT FORWARDING PORT FORWARDING
CONFIGURED ON ROUTER CONFIGURED ON ROUTER

Figure 29: LAN and WLAN connection schematic

Although the tests are quite reliable for short distances, there was noticeable gaps in the received live point cloud feed.
Lab tests have showed substantial packet loss when the receiving computer was in a different room (through multiple
walls) or at a large distance to the internet router (>20m). Hence, for larger geographical areas, preprocessing of the
point cloud data may be required to decrease the latency and increase the reliability of transmitted data. To achieve this,
thereare two main methods which could be realised to decrease the overall point cloud size, including downsampling
and background removal. Downsampling can be achieved using a voxelisation of predefined size. Then only the centroid
of the of the contained points is used instead of the original point cloud points. Alternatively, the background removal
which has been discussed earlier in this report, could also be performed on the sensor side of the network before the
point cloud data is transmitted. In this way, the overall point cloud size would be decreased from 2-3 Mb (for a full
57,600pts/frame with x,y,zand intensity in float32 format in ASCII) to only several kB (depending on how full the frame).

The two standard network protocols which could be utilised to transmit data over a network include TCP (Transmission
control Protocol) and UDP (User Datagram Protocol). UDP is used by the scanner from factory because it is the faster
and more lightweight of the two. UDP is a connectionless transport protocol. Each packet is only sent once and the
receiver does notacknowledge a received message, meaning there is no gurantee that packets are received. On the
contrary, TCP is a reliable and ordered transport protocol, which guarantees that the packets are transmitted in the
correct order and without any loss. However, a lossy connection will significantly increase transmisson times, as many
packets are resent if they are not properly received. If the point cloud is reduced in size prior to being transmitted,

messages may be sent with TCP more reliably over larger networks.

The second block in the systems architecture, i.e. ROS integration & Machine learning model and prediction, requires
the integration of the trained VoxeINET model in to ROS. We have currently not been able to achieve this due to
complications arising from the VoxelNET model being trained on GPU hardware whereas published implementations of
the network in ROS require CPU hardware. The third component can be easily performed if the ROS the ML learning is
running under ROS. The APl is not realised with the time reference of this project, but can be easily implemented, given
more tome.

It is strongly recommended to use ROS. The main benefit of using ROS is the direct use of the existing SDK for rslidar, the
3D point cloud from the 3D LIiDAR is published to a configurable ROS topic and can be treated as an input to the
proposed workflow or any other existing ROS packages or nodes. However, in case of being unfamiliar with ROS, since
the 3D LiDAR utilises the UDP to transmit data, a python script or C++ file can be written and combined with the Point
Cloud library to process all the incoming data packets by developing a network connection to the specified port number
of the 3D LiDAR.

//4 /voxelnet_bounding_box

/\ /pointCloudRSPub \/ﬁ /pointCloudRS b—/ /VoxelNetNode /\‘

-{ /filteredPointCloudRS

Note:
\/j > = Node
- Topic

> - Data flow

Figure 30: ROS integration and Machine Learning

Figure 30 represents the internal implementation in ROS. A node in ROS is a piece of code that will be continuously
sending and receiving data to or from other nodes. The topic is similar to that of a channel where the data is “published”
to and to receive the data, the node will need to “subscribe” to the topic and further process the data. The node
“/pointCloudRSPub” sends 3D point cloudto the topic “/pointCloudRS” and the node “/VoxelNetNode” subscribes to the
same topic and publish the detected pedestrians to the two topics which are “/voxelnetbounding box” and
“[filteredPointCloudRS”, these can then be visualised in Rviz.

Future research

Based on the performed experiments, the following steps are envisaged for near future research and developments:
e Further investigation on ROS and possibilities to run VoxelNET on ROS
e Connecting the point cloud processing with the VoxelNET
e Improving the performance of the background removal using voxels.
o Performing tests with real data from RS-Bpearl and improving the VoxeINET model for real data
e Developing API to provide number of pedestrians in the FOV
e Integrating density computation in the workflow
e Setting up an experiment at front of the Red Centre,
e Further tuning of algorithms to be able to process laser scanes in a relatively short (near real) time.
e Introducing more scanners for obtaining a denser point cloud
e Experimenting with different groups of pedestrians

https://github.com/RoboSense-LiDAR/rslidar_sdk
https://pointclouds.org/
https://pointclouds.org/

References

Alexandrov, M., D. J. Heslop and S. Zlatanova, 2021, 3D Indoor Environment Abstraction for Crowd Simulations in
Complex Buildings, Buildings, 2021, 11(10), 445

Geiger, A., P. Lenz and R. Urtasun, 2012, Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012
IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354-3361, doi: 10.1109/CVPR.2012.6248074.

Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282.

Li, Ch-Ch, P-Ch. Wu and Ch. H. Lin, 2013, Pedestrian detection using heuristic statistics and machine learning,2013 9th
International Conference on Information, Communications & Signal Processing, 2013, pp. 1-5, doi:
10.1109/1CICS.2013.6782960.

Maurelli, F., D. Droeschel, T. Wisspeintner, S. May and H. Surmann, 2009, A 3D laser scanner system for autonomous
vehicle navigation, 2009 International Conference on Advanced Robotics, 2009, pp. 1-6.

Mozaffari, S., O. Y. Al-Jarrah, M. Dianati, P. Jennings and A. Mouzakitis, 2020, Deep Learning-Based Vehicle Behavior
Prediction for Autonomous Driving Applications: A Review, in I[EEE Transactions on Intelligent Transportation Systems,
doi: 10.1109/TITS.2020.3012034.

Qian, Y., J. Barthelemy, and P. Perez, 2021, Urban vehicle localization in public LoRaWan network, Lecture Notes on
Computer Science, International Workshop on Multi-Agent Systems and Agent-Based Simulation, MABS 2020: Multi-
Agent-Based Simulation XXI, pp 28-40

Preparing the Input Data Structure — Transfer Learning Toolkit 2.0 documentation 2011, Nvidia.com, viewed 9
December 2021, <https://docs.nvidia.com/tao/archive/tlt-20/tlt-user-guide/text/preparing data input.html>.

Rosenzweig, J. and M. Bartl, 2015, A Review and Analysis of Literature on Autonomous Driving, THE MAKING-OF
INNOVATION, E-JOURNAL makingofinnovation.com, OCTOBER 2015, 57p.

Scheunert, U., H. Cramer, B. Fardi and G. Wanielik, 2004, Multi sensor based tracking of pedestrians: a survey of suitable
movement models, IEEE Intelligent Vehicles Symposium, 2004, 2004, pp. 774-778, doi: 10.1109/1VS.2004.1336482.

Verbree, E., S. Zlatanova, K. B. A. van Winden, E. B. van der Laan, A. Makri, L. Taizhou, and A. Haojun, 2013 To localise or
to be localised with WiFiin the Hubei museum? The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, Volume XL-4/W4, 2013. 31-35 December 2013, Cape Town, South Africa

Wang, Z. and S. Zlatanova, 2019, Safe Route Determination for First Responders in the Presence of Moving Obstacles,
IEEE Transactions on Intelligent Transportations Systems, pp 1-19

Xiao,W , B. Vallet , K. Schindler, N. Paparoditis, 2016,Simulataneous detection and tracking of pedestrians from
panoramic laser scanning data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume 111-3, 2016 XXIII ISPRS Congress, 12—19 July 2016, Prague, Czech Republic, pp 295-302

Zhao, H and R. Shibasaki, 2005, A novel system for tracking pedestrians using multiple single-row laser-range scanners,
in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no. 2, pp. 283-291, March
2005, doi: 10.1109/TSMCA.2005.84

Zhou, Y 2017, VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection,17 November.

https://docs.nvidia.com/tao/archive/tlt-20/tlt-user-guide/text/preparing_data_input.html
https://docs.nvidia.com/tao/archive/tlt-20/tlt-user-guide/text/preparing_data_input.html

Appendix: Running version of ROS (tested with ROS Noetic on Ubuntu 20.4)

Roscore node running as a process in the background.

rescore hitpi//max MacBookalr 11311/ Q=

RoboSense LiDAR SDK downloaded from the Robosense GitHub repository.

Refer to: https://github.com/RoboSense-LiDAR/rslidar sdk

Run the following code to compile the driver package using CMake and start the executable:

cd rslidar sdk

mkdir build && cd build # Assuming build folder does not existcmake
&& make -j4 # Compile the C++ code

./rslidar sdk node # Run the sensor node Note: make

sure the roscore is run in advance.

RS_driver running in background:

7 max@max-MacBookAlr: ~/Documents/Githubjrslidar_... O

https://github.com/RoboSense-LiDAR/rslidar_sdk

The visualisation tool for the 3D point cloud data on rviz (visualization tool for ROS which

allows you to visualise) from RS B-Peral.

default.rviz* - RViz

File Panels Help

frjinteract | *$"Move Camera [jSelect <-FocusCamera c==Measure .7 2DPoseEstimate . 2DNavGoal @ PublishPoint

= @
L Displays [o] e Views
~ # Global Options i i
Fiked Fragpe map e Oibit (i)
Background Color Il 48; 48; 48 ~ Current View
Frame Rate 30 Near Clip ...
Default Light v Invert Z Axis

~ v Global status: Ok

(o]
Zero
orbit (rviz)
0.01

Target Fra... <Fixed Frame>
V FixedFrame ~ OK e ; ol
% # Grid a2 Focal Shap.... |V
» ¥ PointCloud2 v it 249356
Pitch 0.489798
Field of Vi... 0.785398
» Focal Point 0.047038;-1.150...
Add Save Remove Rename
© Time [©]

ROS Time: | 1636367667.32 ROS Elapsed: |1036.58 Wall Time: |1636367667.35 Wall Elapsed: |1036.52

Reset

Rviz subscribes to the topic “/rslidar_points” to receive data:

rviz X

Create visualization

By display type
- Jclicked_point
@ PointStamped

- [initialpose
¥~ PoseWithCovariance
- /move_base_simple
~ [goal
~ Pose

- /rslidar_points
PointCloudz

By topic

Show unvisualizable topics
Description:
Displays a point cloud from a sensor_msgs::PointCloud2 message

as points in the world, drawn as points, billboards, or cubes. More
Information.

Display Name

PointCloud2

@cancel ok

Experimental

31fps

Later on, we can implement/utilize pedestrian detection algorithms and subscribe to the

/rslidar_points and visualize the result in the same way as we did for 3D point clouds by

stacking them to each other.

Other Configurations:

config.yaml

Open - M Save = = o x

1 common:
2 msg_source: 1 #0: not use Lidar
3 #1: packet message comes from online Lidar
4 #2: packet message comes from ROS or ROS2
5 #3: packet message comes from Pcap file
6 #4: packet message comes from Protobuf-UDP
7 #5: point cloud comes from Protobuf-uUDP
8 send_packet_ros: false #true: Send packets through ROS or R0OS2(Used to record packet)
9 send_point_cloud_ros: #true: Send point cloud through ROS or ROS2
10 send_packet_proto: fa #true: Send packets through Protobuf-uUDP
11 send_point_cloud_prot #true: Send point cloud through Protobuf-UDP
12 pcap_path: /home/ #The path of pcap file
alz]
14 lidar:
15 - driver:
16 lidar_type: RSEP #LiDAR type - RS16, RS32, RSBP, RS128, RS80, RSM1, RSHELIOS
17 frame_id: rsl #Frame id of message
18 msop_port: #Msop port of lidar
19 difop_port: #Difop port of lidar
20 start_angle #Start angle of point cloud
21 end_angle: #End angle of point cloud
22 min_distance: #Minimum distance of point cloud
23 max_distance: #Maximum distance of point cloud
24 use_lidar_cloc e #True--Use the lidar clock as the message timestamp
25 #False-- Use the system clock as the timestamp
26 ros:
27 ros_recv_packet_topic: #Topic used to receive lidar packets from ROS
28 ros_send_packet_topic: #Topic used to send lidar packets through ROS
29 ros_send_point_cloud_topic: /r #Topic used to send point cloud through ROS
30 proto:
31 point_cloud_recv_port: #Port number used for receiving point cloud
32 point_cloud_send_port: #Port number which the point cloud will be send to
33 msop_recv_port: 2 #Port number used for receiving lidar msop packets
34 msop_send_port: #Port number which the msop packets will be send to
35 difop_recv_port: #Port number used for receiving lidar difop packets
36 difop_send_port: #Port number which the difop packets will be send to
37 point_cloud_send_: #Ip address which the point cloud will be send to
38 packet_send_1ip: #Ip address which the lidar packets will be send to
39
40
41
YAML ¥ Tabwidth:8 + Ln 8, Col 20 = INS

Cancel Wired

Details Identity IPva IPvé Security

IPv4 Method Automatic (DHCP) Link-Local Only
O Manual Disable

Shared to other computers

Addresses

Address Metmask

192.168.1.102 255.255.255.0]

DNs Automatic ()

Separate IP add vith commas

