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ABSTRACT  
This paper addresses an approach for storing 3D spatial objects with respect to the requirements of an outdoor augmented reality 
application. The presented 3D data structure focuses spatial objects of urban areas, as the aim is support of 3D topology, high level of 
details and appropriate performance. To satisfy these contradictory requirements, only the outlines of spatial objects are organised in a 
3D topological model. Details on façades (e.g. doors, windows) are modelled as line features. An explicit relationship “line on face” 
indicates the link between the lines and the corresponding façades. The paper concentrates on the 3D topological data structure, which 
a typical example of so called boundary representations. The 3D data structure is implemented in Oracle 8i DBMS using three different 
approaches, i.e. relational, relational with object views and object-relational. The tests have showed that the proposed data structure 
can be tuned to meet the needs of real-time rendering and positioning for augmented reality. We consider our results a promising step 
toward extending 3D GISs to serve real-time applications. 
 
 

1 INTRODUCTION 
Augmented reality is a mixture of reality and virtuality that allows 
real world to be augmented with additional information. Virtual 
objects (text or graphics) are visualised in the field of view via 
special transparent glasses. The user can observe the 
surrounding world and the virtual objects simultaneously (see 
Figure 1). Until recently, the augmented reality application were 
restricted to indoor applications e.g. surgery, inspection of 
hazardous spaces. With the advances of the computer and 
vision technology, augmented reality systems attempt to leave 
the world of indoor applications, which rises new challenging 
topics for research. Among them, structuring and database 
organisation of the 3D model required for positioning and 
visualisation of virtual objects is most pressing. Augmented 
reality aiming at outdoor urban applications (e.g. rescue 
operations, utility management, urban development, guided 
navigation) needs a 3D model of size comparable to a town, i.e. 
thousands of houses, streets, parking lots, etc. For example, the 
national 2D topographic map of The Netherlands contains about 
31 million line objects (see [12]). In residential areas this number 
might increase three or four times for the corresponding 3D 
model. Such an application faces all the problems in processing 
and maintaining large 3D data sets. 
 
This paper presents a 3D model aiming at both maintenance of 
3D topology (one of the most important features of a 3D GIS) 
and efficient organisation of 3D data for augmented reality 
applications. The paper is organised in four sections: first the 
requirements to the data structure are specified with respect to 
the tasks of the vision system, second the proposed data 
structure is discussed, then the 3D re-construction procedures 
are briefly explained and finally some initial experiments within 
Oracle database are reported. The research is a part of the 
interdisciplinary UbiCom project carried out at Delft University of 
Technology, The Netherlands (see [11]).   
 

  

Figure 1: A person with mobile equipment and the observed 
view 

2 REQUIREMENTS    
Discussions related to the content and the structuring of data in 
3D GIS can be found in many publications on 3D GIS (see [2], 
[3], [8], [13], [15]). Therefore, in this paper, we focus the specific 

requirements to the 3D model with respect to the vision system 
intended in the UbiCom project.  
 
The 3D model is to be used for two critical subsystems of the 
system architecture, i.e. positioning and visualisation (rendering) 
of virtual objects. The expected types of data retrieved from the 
database are different for both subsystems.  
 
• Line features. The positioning system in UbiCom relies on 

line features (straight lines) supplied by the database. The 
term positioning refers to determining the accurate location 
of the user (i.e. the person using the system) in the real 
world. The movement of the user is followed (tracked) by 
mobile equipment (GPS, accelerator and inertial system) 
that provides an approximate positioning at range of 2-10 
meters. The accurate positioning is to be achieved by 
establishing the correspondence between lines extracted 
from video images (provided by the video camera that is 
also a part of the mobile unit) in real-time and lines 
retrieved from the 3D model (see [8]). The success of the 
line matching (and thus the accurate positioning) is closely 
related to the amount of details maintained in the 3D 
model.   

• 3D topology. In contract to positioning, the visualisation of 
virtual objects requires no details but correct shape and 
orientation of the real objects. Since the virtual object is 
“mixed” with the real world, it is very likely a real object to 
appear between the virtual one and the user. In this case 
the real object is said to be an occluder of the virtual object 
(see [7]). The user should not see the occluded parts of the 
virtual object. In other words, the rendering engine has to 
be able to compute which parts of the virtual object are not 
visible in that particular moment and remove them from the 
scene. The computations require the accurate location of 
the user (provided by the positioning system) and the 3D 
model of the real objects (retrieved from the 3D GIS). The 
3D model  has to ensure connectivity and continuity. 

• Performance. The mobile equipment is capable of tracking 
the movement in certain period of time without reference to 
the database. This period depends on the speed of walking 
and the movements of the head. The estimation is that 
every 6-7 sec the system has to receive new data sets from 
the database. Within this time (called lag of the system), a 
query has to be sent to the database, processed and the 
retrieved data has to be transmitted back to the mobile unit. 
The performance of the database is one of the critical 
issues influencing the lag of the system.  

• Vector representation. Since both rendering and 
positioning system use vector representation, we 
concentrate on vector data structures.  

• VRML. The Virtual Reality Modelling Language was chosen 
as a standard to exchange data between the individual 
subsystems. The language provides a full and flexible 
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description of the scene (objects, geometry, colours), which 
is very appropriate for the rendering system.  

• Accuracy. The accuracy of the re-constructed 3D model 
plays an important role in the entire process. All the objects 
that are approachable by the user within few meters 
distance have to be reconstructed with an accuracy that 
corresponds to the accuracy of real-time extracted lines 
from the video images. The user might get as close to an 
object as one centimetre may be of significance. Indeed, 
aiming at centimetre accuracy of the objects is a very 
expensive and practically an unrealistic requirement. 
However, certain parts, elements or section of real objects 
have to ensure accuracy ranging from few centimetres to a 
decimetre. Doors and windows at street level, balconies at 
lower floors, statues, paths, tiles (see Figure 9), etc. are 
examples of such elements. The re-construction methods 
applied to achieve such precision are given in section 4.     

 

 

Figure 2: Geometry details represented by line features (the 
façade in the middle) 

Analysis of the requirements reveals the complexity of the issue 
leading even to a contradiction, i.e. high level of details and 
maintenance of 3D topology. Apparently, the construction and 
maintenance of complete 3D topological model (including 
windows, doors, etc.) is time and effort expensive and therefore 
inappropriate. One approach (utilised in our project) is a clear 
discrimination between the types of data needed for the two 
subsystems. The line features (expected from the positioning 
subsystem) are kept as straight lines (see Figure 2). The 
outlines of the 3D objects are considered a separate data set 
and organised in a 3D topological data structure (see Figure 3). 
Thus the amount of data to be topologically maintained can be 
significantly reduced that contributes to the simplification of 
many spatial operations and thus to the speeding up the data 
retrieval. Furthermore, the two data sets are linked by explicit 
reference between line features and façades. The number of 
lines is expected to be rather large (for one façade, it may rise to 
300-400) and therefore the 3D reconstruction process takes 
care relationships “a line belong to a face” to be created and 
explicitly stored in the database.   
 

3 3D DATA STRUCTURING 
The research in 3D data structuring attracts a lot of attention in 
the last several years. The focus is basically on an extended 
conceptual model capable of integrating geometric (position, 
shape and size) and thematic characteristics of objects, and 
mutual spatial relationships. One stream of investigations 
emphasises on formalism (structure, ordering and operators) to 
construct a geometric object regardless of the dimension (see 
[10]). Such models aim at the complete representation of all the 
topological relationships among the objects from different 
dimensions. The models can be referred to as an implicit 
representation of objects, i.e. the relationships are stored and 
the description of the objects can be derived out of them. The 
disadvantage is the size of the database that grows 
tremendously with the complexity of the model. Many reported 
3D models give priorities to topological models that maintain 
objects (i.e. an explicit description of objects). More details on 
data structures of this group can be found in [3], [5], [9], [15]. 

The major problem of such 3D models is that a few of them are 
tested on large data sets under real-time requirements. 
 
An intensive work on clarifying guidelines for developing GIS 
and database software (maintaining 2D, 3D topology) is carried 
out as well. OpenGIS specifications are one of the commonly 
accepted standards (see [6]). The approaches proposed there, 
however, are based on separate maintenance of geometry and 
topology objects, which in practice leads to large duplications. 
Furthermore, the most of the topological models proposed for 
implementation consider mostly the 2D world. 
 

 

Figure 3: Outlines of 3D objects 

Bearing in mind the requirements to the model delineated in the 
previous section and utilising recent achievements in 3D GIS 
research, we propose a 3D topological model extended to 
provide data to augmented reality application. The proposed 3D 
model is a typical boundary model with explicit description of 
objects. To represent its geometric properties related shape, 
size and position, a spatial object can be associated with four 
abstractions namely point, linestring, surface and polyhedron 
(see Figure 4). The notations of the four abstract objects 
correspond to the ones accepted in the OpenGIS specifications. 
A point is an object that does not have shape or size but 
position. A linestring is a type of an object that has length and 
position. A surface is an abstraction of object that has position 
and area. A polyhedron has a position and a volume. These 
objects are built of smaller, simpler elements, called node and 
face. Nodes describe spatial objects that can be represented as 
linestrings (e.g. pipe lines) and points (e.g. trees, lampposts). 
Nodes are constructive elements of faces as well. The order of 
the nodes in the face is maintained as wheel. The orientation of 
the faces is anticlockwise looking at the objects (e.g. buildings) 
from outside. Faces are to be used for the reconstruction of 
objects that are associated with surfaces (e.g. streets, parking 
lots) and polyhedrons (e.g. buildings).   
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Figure 4: Examples of spatial objects to be supported 

Every 3D object can be represented by its thematic and physical 
characteristics as well. For example the spatial object building 
has a year of building, owner and usage that is referred to as 
thematic characteristics. Physical properties are related to 
surface reflectance that determines the colour and texture of the 
objects. Although the model is potentially capable of maintaining 
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thematic and physical characteristics, these aspects are not 
discussed here. Since the rendering system visualises virtual 
objects (real objects are considered in case of occluding), colour 
and texture of real objects are not of interest and are not to be 
maintained. More details related to physical properties of a 
spatial object can be found in [15].  
 
The new element in the 3D topological model is the organisation 
of the data for positioning. The line features are encapsulated 
with their co-ordinates and stored as a separate data set, i.e. 
lines. Each line is considered as a strait line represented by two 
sets of co-ordinates.  
 
The IFO semantic data model is used to represent the spatial 
relationships between all the objects. The motivation is based on 
the fact that the IFO semantic model uses object-oriented 
notations to represent objects and their relationships and 
provides a mechanism to map them into a relational model. 
Three kinds of object-types (abstract, printable and derived) are 
distinguished by the model (see [1]). An abstract type is an 
object that cannot be shown printed, mapped, etc., e.g. a 
building, a street. A printable type of object is an object that can 
be printed, shown, etc. e.g. co-ordinates of a building or a street. 
The objects that are composed of some printable objects or 
other atomic objects are derivable. From atomic (printable or 
derivable) objects complex objects can be derived by 
aggregation and grouping. The principle difference is that 
aggregated objects contain elements from different types, while 
grouped objects contain objects only from one type. IS-A 
relationships are utilised to define sub-types (specialisation) and 
super-types (generalisation) of objects. Figure 5 shows the 
graphical notations for the objects, relationships and principles 
of construction.   

abstract ND
Attributes

derived printable

has (1:m) is-ahas (1:1)

b) functional relationships:

c) constructs:a) types of objects:

aggregationgrouping

node texturecolour\

Figure 5: Notations of IFO model 

Applying these graphical notations we obtain the schema of the 
model shown on Figure 6. The four abstract objects named 
geometric objects  (GO), one explicit spatial relationship (GR) 
and two constructive objects (CnsO) attempt at representation of 
all the objects. 

GR

ZYX

node

face

pointlinesurf

lineon
face
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FID
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is-a
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Figure 6: The proposed 3D topological model 

The topological model is similar to the ones presented in [3], [5] 
and [9] but differs in number of construction elements, i.e. only 
two. The 1D-cell, often called arc or edge (see [5], [9], [10]), is 
omitted. The arc in 2D space have the unique feature of defining 
1:2 relationships with faces and nodes, i.e. an arc has two 
neighbouring faces and nodes. This feature is only partially true 

in 3D and therefore the explicit storage of arcs does not bring a 
significant facilitation. Such representation, i.e. without arcs, has 
shown speed acceleration in many data retrieval operations (see 
[15]). Moreover the computational complexity of writing the 
VRML file is largely reduced, since the representations of 
polyhedron and surface are similar to description of irregular 
shapes in the VRML node IndexedFaceSet (see [14]).  
 

 

Figure 7: Modelling of complex spatial objects 

4 DATA COLLECTION 
The 3D reconstruction of urban areas is still a rather complex 
process involving quite a lot of time and manual interactions. 
Several different methods are applied to provide data with the 
appropriate accuracy and resolution and to obtain the 3D 
topology. The utilised methods can be subdivided into three 
major groups: manual, semi-automatic and automatic. Whilst 
manual and semi-automatic methods are used in the case of 
relatively limited amounts of object elements with high accuracy 
and 3D topology are required (i.e. to build the topological 
model), automatic methods are applied for collection of many 
elements with non-topological organisation (i.e. the line 
features). Furthermore objects (e.g. buildings) with complex 
shape and variety of details (balconies, overhanging roofs) are 
modelled manually from images taken at street level. The 
images are processed in a 3D modelling software (i.e. 
PhotoModeller) that ensures accuracy and resolution within 
required values. A snapshot from CosmoPlayer shows some of 
the reconstructed objects of this group (see Figure 7). 
 

 

Figure 8: Modelling of buildings without overhanging roofs 

Simpler objects such as buildings with flat or gable roofs are 
reconstructed applying semi-automatic methods. For example 
the reconstruction of buildings with flat roofs and roof outlines 
that can be projected onto the footprints (i.e. lack of overhanging 
roofs) are reconstructed by a procedure utilising existing DTM 
and manually digitised roof outlines (see Figure 8). The walls 
and the corresponding 3D topology are obtained fully 
automatically (see [16]). Terrain objects as streets, bicycle or 
pedestrian paths, parking lots, etc. are also integrated in the 
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model as 3D objects. Quite often terrain objects are the only 
clearly visible objects that can be used for positioning (see 
Figure 9). In our case, we obtained the terrain objects by 
overlapping dense laser data (0.60m x 2.00m) with data from the 
topographic base map of the Netherlands (scale 1:1000). Every 
2D point of the topographic map obtains Z-coordinate by 
interpolation on TIN created from the filtered laser data.  
       

 

Figure 9: An image from the video camera with marked points 
needed for positioning 

The procedure for 3D line feature extraction is an integration of 
algorithms for edge detection (on two or more images) and 3D 
line computation using knowledge based methods. The work on 
the algorithms for 3D line extraction as well as the final 
integration of partially reconstructed 3D models from the 
different approaches is in progress.  
 

5 IMPLEMENTATION 
 
The argument about advantages and disadvantages of 
developing a database system from “scratch” may give 
preferences to either of the approaches. A newly design 
database system gives the freedom to create operators that suit 
the tasks of the application in a better way. The utilisation of 
commercial database systems brings advantages in few 
directions: standard data definition and data manipulation (e.g. 
SQL) languages, a variety of indexing schemas, optimisations in 
maintenance of large data sets. Computer graphics specialists 
often consider commercial databases rather slow for real-time 
applications and develop their own databases (see [4]). 
However, the technology and software achievements in the last 
several years in the field of database research challenge with 
improved functionality and performance that may be sufficient for 
any application. Therefore we have decided on implementation 
of the model described above in a commercial database, i.e. the 
relational database Oracle 8i. The database offers a number of 
possibilities for representing the spatial objects described above. 
Three different implementations of the model were created and 
experimented.   
  
5.1 Relational implementation 
The first straightforward approach is the relational 
implementation. The IFO model can be converted directly into a 
relational data model according to the rules: 
• abstract object types are represented as relational tables 

(or relations) 
• derived object types are represented as relational tables or 

domains (if they are atomic objects to a complex object)  
• printed object types are represented as domains 
• IS-A relation is propagated until a printed object type. 
 
For each geometric object a separate relational table is created. 
This is to say that the entire model consists of seven relation 
tables. For simplicity, the names of the tables are chosen to 
correspond to the names of the objects, i.e. NODE, FACE, LINE, 
POINT, LINEONF, SURF and PHED. The implementation of the 
NODE table is trivial: one column for the identifier of the node 
and the three columns for the (geodetic) co-ordinates of the 

points. The table POINT accommodates the identifier of the 
point and the identifier of the node that describes this spatial 
object. Since the remaining tables have very similar structure, 
only the FACE table is explained. The relationship between a 
face and constituting nodes is one-to-many (1:m) which can be 
represented in a relational form by creating multiple rows or 
columns in the table. Since the multiple-column representation 
leads to a table with large amounts of zero fields, we give 
preferences to multiple-row representation. Therefore the FACE 
table has to consist of three columns, i.e. a column for the 
identifier of the face, a column indicating the order and the 
number of the nodes in a face, and a column containing the 
identifiers of the nodes. Thus each FACE is linked to the 
identifiers of the nodes and not to the co-ordinates. The 
LINEONF table contains columns for the six co-ordinates of the 
lines and identifier of the face that the line feature belongs to. 
Each line feature is thus represented by one row in the relational 
table.  
 
Let us adopt the following representation for a relational table: R 
= ({A1, …, An}, {PK}) where R = () is the relational table, {A1, …, 
An} are domains (columns), {PK} is primary key. Then we obtain 
the following relational mapping (no primary key is defined): 
 
NODE ({NID,X,Y,Z}) 
FACE ({FID,SEQF,NIDF}) 
POINT ({PID, NID}) 
LINE ({LID, SEQL,NIDL}) 
SURF ({SID,SEQS,FIDS}) 
PHED ({BID,SEQB,FIDB}) 
LINEONF ({LFID,FID,X1,Y1,Z1,X2,Y2,Z2)}) 
 

f1

f2f3

f4

f6

f5

L1 L2

 n1 n2

n3n4

n5 n6

n7n8

Figure 10: An example of 3D object with line features on face f1 

For example, a cube that consists of six faces (f1…f6), eight 
nodes (n1…n8) and two lines (L1 and L2) on the face f1 will be 
represented by the following records in the tables FACE, LINE 
and PHED: 

 
FACE PHED 

Fid Seqf nid bid Seqb Fid 
1 1 1 1 1 6 
1 2 2 1 2 5 
1 3 6 1 3 1 
1 4 5 1 4 2 
… … … 1 5 3 
6 1 5 1 6 4 
6 2 6 
6 3 7 
6 4 8 

 

 
LINE 
Lid Fid X1 y1 Z1 x2 y2 z2 
1 1 … … … … … … 
2 1 … … … … … … 
 
A pure relational representation is well known to be 
inappropriate for object-oriented models due to rather large 
amount of duplicated data to represent groups and aggregations 
of objects (i.e. one-to-many relationships). In our case for 
example, the column SEQF in the FACE table is a way out of 
storing the one-to-many relationship. One object is represented 
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by a number of rows as FID is repeated in each record. Oracle 
DBMS offers two options to overcome this disadvantage i.e. 
object-oriented views and object-relational implementation.   
 
5.2 Object-oriented views 
Object-oriented views do not change the relational type of the 
data structure but provide certain facilitation in maintenance of 
objects. The employment of object-oriented views gives 
advantages in several directions: 1) the view is processed 
entirely on the database level that results in significantly fewer 
SQL statements and thus round trips (query-respond); 2) the 
data can be extracted from a single view table instead of writing 
complex joins for multiple tables; 3) the extracted data can be 
straightforward used by object-oriented languages for further 
processing. Views are especially appropriate for retrieval of 
standard data sets, e.g. the geometry needed for composing a 
VRML file. To assess the performance of the object-oriented 
views, we have created an object type vrml_export (that contains 
the data for the VRML scene graph) and an object view using 
this type. The syntax of the SQL commands is given bellow: 
 
create type VRML_EXPORT as object (FID number (5), SEQF 
number (3), NID number (5),  
XC number(12), YC number (12), ZC number(12));  
 
create view VRML of VRML_EXPORT with object identifier (FID) 
as  
select FACE.FID, SEQF, NODE.NID, X, Y, Z 
from FACE, NODE, PHED 
where PHED.FIDB=FACE.FID and FACE.NIDF=NODE.NID 
ordered by FID, SEQF  
  
5.3 Object-relational implementation 
A step further is the object-relational implementation. While the 
object-oriented views provide a mechanism to encompass data 
from relational tables in an object, the object-relational 
implementation allows an object to be stored in a relational 
table. There are basically two approaches, i.e. an object can be 
stored in a row or in a column. The retrieval of the object then is 
based on referencing to only one row or column. The row 
objects are stored in an object table that practically is very 
similar to the relational table but allows an additional object 
identifier column and index. The object identifier is automatically 
generated and indexed for efficient lookups. The row 
representation of objects is not explored yet. 
 
Our 3D topological model make use of the column 
representation. The data of an object of lower dimension (used 
to describe the higher dimensional object) is stored in a single 
column. This means that the number of rows in the object table 
will be reduced to the actual number of the higher dimensional 
object. The advantage is compact representation and hence a 
reduction of the number of rows to be traversed.  
 
Object-oriented implementation is a two-step procedure, i.e. 
creating objects and creating tables. We use two extended 
Oracle data types that are intended for representing the one-to-
many relationship, i.e. varrays and nested tables. While varrays 
are recommended for objects which elements are always 
retrieved in their completeness, nested tables are said to be 
suitable for cases that require accessing and retrieving individual 
elements of an object. According to Oracle manuals, the better 
performance is the major advantage of varrays compare to 
nested tables. Although most of the operations (i.e. retrieval of 
geometry and spatial relationships) can be classified as retrieval 
of objects with their complete set of elements, we utilised both 
data types. The syntax of the commands is given bellow:  
 
Varrays: 
create type NodeArray AS varray (30) OF number (5); 
 
Nested tables: 
create type NodeTable AS table OF number(5); 
 

Utilising the newly created data types NodeArray and 
NodeTable, the FACE object can be stored in the database in 
two ways as follows: 
 
FACE_A ({FID, NUM, NLISTA}, {FID}), where NLISTA is of data 
type NodeArray 
 
FACE_T ({FID, NUM, NLISTT}, {FID}), where NLISTT is of data 
type NodeTable 
 
Note that a second column (giving the actual number of nodes 
per face) is introduced in both tables. Similar tables are created 
for LINE, SURFACE and POLYHEDRON, e.g. the tables using 
varrays are given bellow: 
 
LINE_A ({LID, NUM, NLISTA}, {LID}) 
SURF_A ({SID, NUM, NLISTA}, {SID}) 
PHED_A({BID,NUM,NLISTA},{BID}) 
 
5.4 Using the spatial data types of Oracle 
Currently Oracle Spatial has implemented only the geometry 
object model as it is specified in Open GIS specifications. This 
means that all the supported shapes (i.e. geometric objects in 
Oracle Spatial) are represented by their co-ordinates. 
Consequently, if two objects share co-ordinates, they are stored 
two times in the database. The topological operations are then 
explicitly computed when it is necessary. Furthermore the 
implemented topological operations are limited to cases in 2D 
space. Hence, the utilisation of the spatial objects for our model 
is rather limited. The only straightforward possibility is to 
represent NODE object by the Oracle shape SDO_POINT. The 
description of the shape SDO_POINT and NODE are identical. 
The advantages and disadvantages of such representation are 
to be further explored. 
 

6 OPERATORS TO RETRIEVE THE GEOMETRY  
 
The model presented in the previous sections does not have a 
direct link to the geometry of the objects, i.e. the co-ordinates of 
objects have to be derived. The operators to convert topology to 
geometry depend on the geometric model and the implemented 
mapping. It is possible to utilise the geometric model for spatial 
objects defined in OpenGIS specification. However, within the 
UbiCom project there is an agreement on adopting the 
geometric model of VRML. This model (known also as a scene 
graph) preserves the topology of each individual object or group 
of objects. In this respect, the operators to create a VRML file 
can be considered as operators for transformation from one 
topological data structure to another and therefore they are more 
sophisticated. For example, the SQL queries to retrieve the 
geometry (co-ordinates) of a POLYHEDRON with identifier 23 
from relational and object-relational (varrays) mappings are: 
 
Relational: 
select FID, SEQF, NID, X, Y, Z 
from FACE, NODE, PHED 
where PHED=23 and PHED.FIDB=FACE.FID and 
FACE.NIDF=NODE.NID  
ordered by FID, SEQF 
 
Varrays (part of a PL/SQL script): 
inid arra:= arra(0); 
jj number (5); 
t1 number(5); 
t2 number(5); 
begin 
… 
  select NUM, NLIST into t1, inid from FACE_A 
    where FID=23; 
  jj:=1; 
  while jj< t1 loop 
     select NID into t2 from NODE 
        where inid(jj) = nid; 
     jj:=jj+1; 
  end loop; 
… 
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The result is a list of co-ordinates structured according to the 
order of the faces and order of the nodes in a face. To create the 
VRML file, the data set obtained with these queries has to be 
further structured according the VRML model. In our example, 
two options are possible to represent the faces constructing the 
POLYHEDRON 23 in VRML, i.e. they can be stored as individual 
faces or as a part of one polyhedron. The first option is simpler 
and can be derived directly from the SQL query. The second 
representation requires control of duplicated co-ordinates and 
the correct ordering of the corresponding co-ordinates in the 
description of the faces (i.e. in the VRML node coordIndex). 
Currently, we concentrated on development of operators that 
create a VRML file consisting of objects (i.e. not individual 
faces). Since standard SQL statements cannot perform this 
operator, the computations have to be completed with the help 
of a host language (PL/SQL, C++, Java). At this stage, we have 
used PL/SQL, i.e. the script language provided by Oracle.   
 
A number of tests aimed at clarification of the best mapping and 
fastest operators to retrieve the needed data. For the purpose 
the first tree mappings discussed in the paper are implemented 
and populated with data. The corresponding VRML creators are 
tested for performance. Although the data structure is at very 
initial stage, the first results are very encouraging: 20 000 faces 
(part of 1600 buildings) can be retrieved in less then 23 seconds 
for representation with nested tables and less then a second for 
the relational representation and object-oriented views. The 
conditions of the test and the data sets are reported and 
discussed in more details in [17]. In principal, we expect less 
data to be extracted for rendering, i.e. the objects that are visible 
only from the current position of the user. These data are 
estimated in the range between 50 and 5000 faces if spatial 
search is applied. This is indication for a possible further 
improvement of the obtained results. 
 

7 CONCLUSIONS 
We have presented a 3D topological structure that provides data 
for a real time application i.e. serves two tasks (pose 
determination and rendering of virtual objects) that require real-
time commuting. The proposed structure maintains four 
abstractions of geometric representation (the ones mostly 
employed in 3D modelling) based on two constructive elements 
(faces and nodes). To be able to provide “cheap” details in terms 
of line features, the model incorporates non-topologically 
organised data, i.e. lines. Explicit relationship links a set of lines 
to a face. To be able to achieve the required accuracy and to 
build the 3D topology, a number of 3D reconstruction methods 
are applied. The model is implemented in relational database 
Oracle utilising relational and object-relational mappings. 
Several operators to create a VRML file are created and tested.  
 
The experiments clearly show that a 3D topological model can 
be adopted for an augmented reality application. The 
performance of the mappings in relational database drops 
bellow the required 6 seconds. The methods utilised in the 3D 
reconstruction ensure accuracy of few decimetres that is agreed 
to be sufficient for the positioning system. Therefore we consider 
the results reported in this paper a successful step toward a 3D 
GIS supplying data for a real time application.    
   
Still more experiments are needed to clarify the relational 
mapping that will assure the best performance. Currently, the 
SQL queries are executed from the Oracle high-level language 
that cannot be integrated in the UbiCom architecture, i.e. C++ 
modules have to be developed and further tested. Location and 
efficient spatial search in such large databases can not be 
performed without appropriate spatial indexing. One of the 
directions for further research within the project is related to 
developing a set of specific operations than will reduce the 
amount of data transmitted to the vision system. Examples of 
such operators are determination of the area of interest (using 
approximate positioning obtained by the mobile equipment), 
back-face culling (to eliminate invisible faces) and a variety of 
line filters for retrieval of line features.    
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