
Siyka Zlatanova

3D MODELLING FOR AUGMENTED REALITY
Siyka Zlatanova

Department of Geodesy, Delft University of Technology
Thijsseweg 11, 2629 JA, Delft, The Netherlands

s.zlatanova@geo.tudelft.nl

KEYWORDS 3D topology, 3D model, spatial objects, 3D visualisation, 3D GIS, real-time

ABSTRACT
This paper addresses an approach for storing 3D spatial objects with respect to the requirements of an outdoor augmented reality
application. The presented 3D data structure focuses spatial objects of urban areas, as the aim is support of 3D topology, high level of
details and appropriate performance. To satisfy these contradictory requirements, only the outlines of spatial objects are organised in a
3D topological model. Details on façades (e.g. doors, windows) are modelled as line features. An explicit relationship “line on face”
indicates the link between the lines and the corresponding façades. The paper concentrates on the 3D topological data structure, which
a typical example of so called boundary representations. The 3D data structure is implemented in Oracle 8i DBMS using three different
approaches, i.e. relational, relational with object views and object-relational. The tests have showed that the proposed data structure
can be tuned to meet the needs of real-time rendering and positioning for augmented reality. We consider our results a promising step
toward extending 3D GISs to serve real-time applications.

1 INTRODUCTION
Augmented reality is a mixture of reality and virtuality that allows
real world to be augmented with additional information. Virtual
objects (text or graphics) are visualised in the field of view via
special transparent glasses. The user can observe the
surrounding world and the virtual objects simultaneously (see
Figure 1). Until recently, the augmented reality application were
restricted to indoor applications e.g. surgery, inspection of
hazardous spaces. With the advances of the computer and
vision technology, augmented reality systems attempt to leave
the world of indoor applications, which rises new challenging
topics for research. Among them, structuring and database
organisation of the 3D model required for positioning and
visualisation of virtual objects is most pressing. Augmented
reality aiming at outdoor urban applications (e.g. rescue
operations, utility management, urban development, guided
navigation) needs a 3D model of size comparable to a town, i.e.
thousands of houses, streets, parking lots, etc. For example, the
national 2D topographic map of The Netherlands contains about
31 million line objects (see [12]). In residential areas this number
might increase three or four times for the corresponding 3D
model. Such an application faces all the problems in processing
and maintaining large 3D data sets.

This paper presents a 3D model aiming at both maintenance of
3D topology (one of the most important features of a 3D GIS)
and efficient organisation of 3D data for augmented reality
applications. The paper is organised in four sections: first the
requirements to the data structure are specified with respect to
the tasks of the vision system, second the proposed data
structure is discussed, then the 3D re-construction procedures
are briefly explained and finally some initial experiments within
Oracle database are reported. The research is a part of the
interdisciplinary UbiCom project carried out at Delft University of
Technology, The Netherlands (see [11]).

Figure 1: A person with mobile equipment and the observed
view

2 REQUIREMENTS
Discussions related to the content and the structuring of data in
3D GIS can be found in many publications on 3D GIS (see [2],
[3], [8], [13], [15]). Therefore, in this paper, we focus the specific

requirements to the 3D model with respect to the vision system
intended in the UbiCom project.

The 3D model is to be used for two critical subsystems of the
system architecture, i.e. positioning and visualisation (rendering)
of virtual objects. The expected types of data retrieved from the
database are different for both subsystems.

• Line features. The positioning system in UbiCom relies on

line features (straight lines) supplied by the database. The
term positioning refers to determining the accurate location
of the user (i.e. the person using the system) in the real
world. The movement of the user is followed (tracked) by
mobile equipment (GPS, accelerator and inertial system)
that provides an approximate positioning at range of 2-10
meters. The accurate positioning is to be achieved by
establishing the correspondence between lines extracted
from video images (provided by the video camera that is
also a part of the mobile unit) in real-time and lines
retrieved from the 3D model (see [8]). The success of the
line matching (and thus the accurate positioning) is closely
related to the amount of details maintained in the 3D
model.

• 3D topology. In contract to positioning, the visualisation of
virtual objects requires no details but correct shape and
orientation of the real objects. Since the virtual object is
“mixed” with the real world, it is very likely a real object to
appear between the virtual one and the user. In this case
the real object is said to be an occluder of the virtual object
(see [7]). The user should not see the occluded parts of the
virtual object. In other words, the rendering engine has to
be able to compute which parts of the virtual object are not
visible in that particular moment and remove them from the
scene. The computations require the accurate location of
the user (provided by the positioning system) and the 3D
model of the real objects (retrieved from the 3D GIS). The
3D model has to ensure connectivity and continuity.

• Performance. The mobile equipment is capable of tracking
the movement in certain period of time without reference to
the database. This period depends on the speed of walking
and the movements of the head. The estimation is that
every 6-7 sec the system has to receive new data sets from
the database. Within this time (called lag of the system), a
query has to be sent to the database, processed and the
retrieved data has to be transmitted back to the mobile unit.
The performance of the database is one of the critical
issues influencing the lag of the system.

• Vector representation. Since both rendering and
positioning system use vector representation, we
concentrate on vector data structures.

• VRML. The Virtual Reality Modelling Language was chosen
as a standard to exchange data between the individual
subsystems. The language provides a full and flexible

mailto:s.zlatanova@geo.tudelft.nl

Dynamic and Multi-dimensional GIS, Bangkok, Thailand, May 23-25, 2001

description of the scene (objects, geometry, colours), which
is very appropriate for the rendering system.

• Accuracy. The accuracy of the re-constructed 3D model
plays an important role in the entire process. All the objects
that are approachable by the user within few meters
distance have to be reconstructed with an accuracy that
corresponds to the accuracy of real-time extracted lines
from the video images. The user might get as close to an
object as one centimetre may be of significance. Indeed,
aiming at centimetre accuracy of the objects is a very
expensive and practically an unrealistic requirement.
However, certain parts, elements or section of real objects
have to ensure accuracy ranging from few centimetres to a
decimetre. Doors and windows at street level, balconies at
lower floors, statues, paths, tiles (see Figure 9), etc. are
examples of such elements. The re-construction methods
applied to achieve such precision are given in section 4.

Figure 2: Geometry details represented by line features (the
façade in the middle)

Analysis of the requirements reveals the complexity of the issue
leading even to a contradiction, i.e. high level of details and
maintenance of 3D topology. Apparently, the construction and
maintenance of complete 3D topological model (including
windows, doors, etc.) is time and effort expensive and therefore
inappropriate. One approach (utilised in our project) is a clear
discrimination between the types of data needed for the two
subsystems. The line features (expected from the positioning
subsystem) are kept as straight lines (see Figure 2). The
outlines of the 3D objects are considered a separate data set
and organised in a 3D topological data structure (see Figure 3).
Thus the amount of data to be topologically maintained can be
significantly reduced that contributes to the simplification of
many spatial operations and thus to the speeding up the data
retrieval. Furthermore, the two data sets are linked by explicit
reference between line features and façades. The number of
lines is expected to be rather large (for one façade, it may rise to
300-400) and therefore the 3D reconstruction process takes
care relationships “a line belong to a face” to be created and
explicitly stored in the database.

3 3D DATA STRUCTURING
The research in 3D data structuring attracts a lot of attention in
the last several years. The focus is basically on an extended
conceptual model capable of integrating geometric (position,
shape and size) and thematic characteristics of objects, and
mutual spatial relationships. One stream of investigations
emphasises on formalism (structure, ordering and operators) to
construct a geometric object regardless of the dimension (see
[10]). Such models aim at the complete representation of all the
topological relationships among the objects from different
dimensions. The models can be referred to as an implicit
representation of objects, i.e. the relationships are stored and
the description of the objects can be derived out of them. The
disadvantage is the size of the database that grows
tremendously with the complexity of the model. Many reported
3D models give priorities to topological models that maintain
objects (i.e. an explicit description of objects). More details on
data structures of this group can be found in [3], [5], [9], [15].

The major problem of such 3D models is that a few of them are
tested on large data sets under real-time requirements.

An intensive work on clarifying guidelines for developing GIS
and database software (maintaining 2D, 3D topology) is carried
out as well. OpenGIS specifications are one of the commonly
accepted standards (see [6]). The approaches proposed there,
however, are based on separate maintenance of geometry and
topology objects, which in practice leads to large duplications.
Furthermore, the most of the topological models proposed for
implementation consider mostly the 2D world.

Figure 3: Outlines of 3D objects

Bearing in mind the requirements to the model delineated in the
previous section and utilising recent achievements in 3D GIS
research, we propose a 3D topological model extended to
provide data to augmented reality application. The proposed 3D
model is a typical boundary model with explicit description of
objects. To represent its geometric properties related shape,
size and position, a spatial object can be associated with four
abstractions namely point, linestring, surface and polyhedron
(see Figure 4). The notations of the four abstract objects
correspond to the ones accepted in the OpenGIS specifications.
A point is an object that does not have shape or size but
position. A linestring is a type of an object that has length and
position. A surface is an abstraction of object that has position
and area. A polyhedron has a position and a volume. These
objects are built of smaller, simpler elements, called node and
face. Nodes describe spatial objects that can be represented as
linestrings (e.g. pipe lines) and points (e.g. trees, lampposts).
Nodes are constructive elements of faces as well. The order of
the nodes in the face is maintained as wheel. The orientation of
the faces is anticlockwise looking at the objects (e.g. buildings)
from outside. Faces are to be used for the reconstruction of
objects that are associated with surfaces (e.g. streets, parking
lots) and polyhedrons (e.g. buildings).

Surface

Face

Linestring Point

Line

.

Node

Node_id 1

Node_id 2

Node_id 3

Node_id 4
Node_id 5

Node_id 5

Node_id 6 Node_id 7

Node_id 8

Node_id 9

X,Y,Z
X, Y, Z

Face_id 1

Face_id 2

Face_id 3

Face_id 4

Face_id 5

Figure 4: Examples of spatial objects to be supported

Every 3D object can be represented by its thematic and physical
characteristics as well. For example the spatial object building
has a year of building, owner and usage that is referred to as
thematic characteristics. Physical properties are related to
surface reflectance that determines the colour and texture of the
objects. Although the model is potentially capable of maintaining

Siyka Zlatanova

thematic and physical characteristics, these aspects are not
discussed here. Since the rendering system visualises virtual
objects (real objects are considered in case of occluding), colour
and texture of real objects are not of interest and are not to be
maintained. More details related to physical properties of a
spatial object can be found in [15].

The new element in the 3D topological model is the organisation
of the data for positioning. The line features are encapsulated
with their co-ordinates and stored as a separate data set, i.e.
lines. Each line is considered as a strait line represented by two
sets of co-ordinates.

The IFO semantic data model is used to represent the spatial
relationships between all the objects. The motivation is based on
the fact that the IFO semantic model uses object-oriented
notations to represent objects and their relationships and
provides a mechanism to map them into a relational model.
Three kinds of object-types (abstract, printable and derived) are
distinguished by the model (see [1]). An abstract type is an
object that cannot be shown printed, mapped, etc., e.g. a
building, a street. A printable type of object is an object that can
be printed, shown, etc. e.g. co-ordinates of a building or a street.
The objects that are composed of some printable objects or
other atomic objects are derivable. From atomic (printable or
derivable) objects complex objects can be derived by
aggregation and grouping. The principle difference is that
aggregated objects contain elements from different types, while
grouped objects contain objects only from one type. IS-A
relationships are utilised to define sub-types (specialisation) and
super-types (generalisation) of objects. Figure 5 shows the
graphical notations for the objects, relationships and principles
of construction.

abstract ND
Attributes

derived printable

has (1:m) is-ahas (1:1)

b) functional relationships:

c) constructs:a) types of objects:

aggregationgrouping

node texturecolour\

Figure 5: Notations of IFO model

Applying these graphical notations we obtain the schema of the
model shown on Figure 6. The four abstract objects named
geometric objects (GO), one explicit spatial relationship (GR)
and two constructive objects (CnsO) attempt at representation of
all the objects.

GR

ZYX

node

face

pointlinesurf

lineon
face

is-a

CnsO

is-a

FID

BID SID LID PID

NID

is-a

phed

GO is-a

Figure 6: The proposed 3D topological model

The topological model is similar to the ones presented in [3], [5]
and [9] but differs in number of construction elements, i.e. only
two. The 1D-cell, often called arc or edge (see [5], [9], [10]), is
omitted. The arc in 2D space have the unique feature of defining
1:2 relationships with faces and nodes, i.e. an arc has two
neighbouring faces and nodes. This feature is only partially true

in 3D and therefore the explicit storage of arcs does not bring a
significant facilitation. Such representation, i.e. without arcs, has
shown speed acceleration in many data retrieval operations (see
[15]). Moreover the computational complexity of writing the
VRML file is largely reduced, since the representations of
polyhedron and surface are similar to description of irregular
shapes in the VRML node IndexedFaceSet (see [14]).

Figure 7: Modelling of complex spatial objects

4 DATA COLLECTION
The 3D reconstruction of urban areas is still a rather complex
process involving quite a lot of time and manual interactions.
Several different methods are applied to provide data with the
appropriate accuracy and resolution and to obtain the 3D
topology. The utilised methods can be subdivided into three
major groups: manual, semi-automatic and automatic. Whilst
manual and semi-automatic methods are used in the case of
relatively limited amounts of object elements with high accuracy
and 3D topology are required (i.e. to build the topological
model), automatic methods are applied for collection of many
elements with non-topological organisation (i.e. the line
features). Furthermore objects (e.g. buildings) with complex
shape and variety of details (balconies, overhanging roofs) are
modelled manually from images taken at street level. The
images are processed in a 3D modelling software (i.e.
PhotoModeller) that ensures accuracy and resolution within
required values. A snapshot from CosmoPlayer shows some of
the reconstructed objects of this group (see Figure 7).

Figure 8: Modelling of buildings without overhanging roofs

Simpler objects such as buildings with flat or gable roofs are
reconstructed applying semi-automatic methods. For example
the reconstruction of buildings with flat roofs and roof outlines
that can be projected onto the footprints (i.e. lack of overhanging
roofs) are reconstructed by a procedure utilising existing DTM
and manually digitised roof outlines (see Figure 8). The walls
and the corresponding 3D topology are obtained fully
automatically (see [16]). Terrain objects as streets, bicycle or
pedestrian paths, parking lots, etc. are also integrated in the

Dynamic and Multi-dimensional GIS, Bangkok, Thailand, May 23-25, 2001

model as 3D objects. Quite often terrain objects are the only
clearly visible objects that can be used for positioning (see
Figure 9). In our case, we obtained the terrain objects by
overlapping dense laser data (0.60m x 2.00m) with data from the
topographic base map of the Netherlands (scale 1:1000). Every
2D point of the topographic map obtains Z-coordinate by
interpolation on TIN created from the filtered laser data.

Figure 9: An image from the video camera with marked points
needed for positioning

The procedure for 3D line feature extraction is an integration of
algorithms for edge detection (on two or more images) and 3D
line computation using knowledge based methods. The work on
the algorithms for 3D line extraction as well as the final
integration of partially reconstructed 3D models from the
different approaches is in progress.

5 IMPLEMENTATION

The argument about advantages and disadvantages of
developing a database system from “scratch” may give
preferences to either of the approaches. A newly design
database system gives the freedom to create operators that suit
the tasks of the application in a better way. The utilisation of
commercial database systems brings advantages in few
directions: standard data definition and data manipulation (e.g.
SQL) languages, a variety of indexing schemas, optimisations in
maintenance of large data sets. Computer graphics specialists
often consider commercial databases rather slow for real-time
applications and develop their own databases (see [4]).
However, the technology and software achievements in the last
several years in the field of database research challenge with
improved functionality and performance that may be sufficient for
any application. Therefore we have decided on implementation
of the model described above in a commercial database, i.e. the
relational database Oracle 8i. The database offers a number of
possibilities for representing the spatial objects described above.
Three different implementations of the model were created and
experimented.

5.1 Relational implementation
The first straightforward approach is the relational
implementation. The IFO model can be converted directly into a
relational data model according to the rules:
• abstract object types are represented as relational tables

(or relations)
• derived object types are represented as relational tables or

domains (if they are atomic objects to a complex object)
• printed object types are represented as domains
• IS-A relation is propagated until a printed object type.

For each geometric object a separate relational table is created.
This is to say that the entire model consists of seven relation
tables. For simplicity, the names of the tables are chosen to
correspond to the names of the objects, i.e. NODE, FACE, LINE,
POINT, LINEONF, SURF and PHED. The implementation of the
NODE table is trivial: one column for the identifier of the node
and the three columns for the (geodetic) co-ordinates of the

points. The table POINT accommodates the identifier of the
point and the identifier of the node that describes this spatial
object. Since the remaining tables have very similar structure,
only the FACE table is explained. The relationship between a
face and constituting nodes is one-to-many (1:m) which can be
represented in a relational form by creating multiple rows or
columns in the table. Since the multiple-column representation
leads to a table with large amounts of zero fields, we give
preferences to multiple-row representation. Therefore the FACE
table has to consist of three columns, i.e. a column for the
identifier of the face, a column indicating the order and the
number of the nodes in a face, and a column containing the
identifiers of the nodes. Thus each FACE is linked to the
identifiers of the nodes and not to the co-ordinates. The
LINEONF table contains columns for the six co-ordinates of the
lines and identifier of the face that the line feature belongs to.
Each line feature is thus represented by one row in the relational
table.

Let us adopt the following representation for a relational table: R
= ({A1, …, An}, {PK}) where R = () is the relational table, {A1, …,
An} are domains (columns), {PK} is primary key. Then we obtain
the following relational mapping (no primary key is defined):

NODE ({NID,X,Y,Z})
FACE ({FID,SEQF,NIDF})
POINT ({PID, NID})
LINE ({LID, SEQL,NIDL})
SURF ({SID,SEQS,FIDS})
PHED ({BID,SEQB,FIDB})
LINEONF ({LFID,FID,X1,Y1,Z1,X2,Y2,Z2)})

f1

f2f3

f4

f6

f5

L1 L2

 n1 n2

n3n4

n5 n6

n7n8

Figure 10: An example of 3D object with line features on face f1

For example, a cube that consists of six faces (f1…f6), eight
nodes (n1…n8) and two lines (L1 and L2) on the face f1 will be
represented by the following records in the tables FACE, LINE
and PHED:

FACE PHED

Fid Seqf nid bid Seqb Fid
1 1 1 1 1 6
1 2 2 1 2 5
1 3 6 1 3 1
1 4 5 1 4 2
… … … 1 5 3
6 1 5 1 6 4
6 2 6
6 3 7
6 4 8

LINE
Lid Fid X1 y1 Z1 x2 y2 z2
1 1 … … … … … …
2 1 … … … … … …

A pure relational representation is well known to be
inappropriate for object-oriented models due to rather large
amount of duplicated data to represent groups and aggregations
of objects (i.e. one-to-many relationships). In our case for
example, the column SEQF in the FACE table is a way out of
storing the one-to-many relationship. One object is represented

Siyka Zlatanova

by a number of rows as FID is repeated in each record. Oracle
DBMS offers two options to overcome this disadvantage i.e.
object-oriented views and object-relational implementation.

5.2 Object-oriented views
Object-oriented views do not change the relational type of the
data structure but provide certain facilitation in maintenance of
objects. The employment of object-oriented views gives
advantages in several directions: 1) the view is processed
entirely on the database level that results in significantly fewer
SQL statements and thus round trips (query-respond); 2) the
data can be extracted from a single view table instead of writing
complex joins for multiple tables; 3) the extracted data can be
straightforward used by object-oriented languages for further
processing. Views are especially appropriate for retrieval of
standard data sets, e.g. the geometry needed for composing a
VRML file. To assess the performance of the object-oriented
views, we have created an object type vrml_export (that contains
the data for the VRML scene graph) and an object view using
this type. The syntax of the SQL commands is given bellow:

create type VRML_EXPORT as object (FID number (5), SEQF
number (3), NID number (5),
XC number(12), YC number (12), ZC number(12));

create view VRML of VRML_EXPORT with object identifier (FID)
as
select FACE.FID, SEQF, NODE.NID, X, Y, Z
from FACE, NODE, PHED
where PHED.FIDB=FACE.FID and FACE.NIDF=NODE.NID
ordered by FID, SEQF

5.3 Object-relational implementation
A step further is the object-relational implementation. While the
object-oriented views provide a mechanism to encompass data
from relational tables in an object, the object-relational
implementation allows an object to be stored in a relational
table. There are basically two approaches, i.e. an object can be
stored in a row or in a column. The retrieval of the object then is
based on referencing to only one row or column. The row
objects are stored in an object table that practically is very
similar to the relational table but allows an additional object
identifier column and index. The object identifier is automatically
generated and indexed for efficient lookups. The row
representation of objects is not explored yet.

Our 3D topological model make use of the column
representation. The data of an object of lower dimension (used
to describe the higher dimensional object) is stored in a single
column. This means that the number of rows in the object table
will be reduced to the actual number of the higher dimensional
object. The advantage is compact representation and hence a
reduction of the number of rows to be traversed.

Object-oriented implementation is a two-step procedure, i.e.
creating objects and creating tables. We use two extended
Oracle data types that are intended for representing the one-to-
many relationship, i.e. varrays and nested tables. While varrays
are recommended for objects which elements are always
retrieved in their completeness, nested tables are said to be
suitable for cases that require accessing and retrieving individual
elements of an object. According to Oracle manuals, the better
performance is the major advantage of varrays compare to
nested tables. Although most of the operations (i.e. retrieval of
geometry and spatial relationships) can be classified as retrieval
of objects with their complete set of elements, we utilised both
data types. The syntax of the commands is given bellow:

Varrays:
create type NodeArray AS varray (30) OF number (5);

Nested tables:
create type NodeTable AS table OF number(5);

Utilising the newly created data types NodeArray and
NodeTable, the FACE object can be stored in the database in
two ways as follows:

FACE_A ({FID, NUM, NLISTA}, {FID}), where NLISTA is of data
type NodeArray

FACE_T ({FID, NUM, NLISTT}, {FID}), where NLISTT is of data
type NodeTable

Note that a second column (giving the actual number of nodes
per face) is introduced in both tables. Similar tables are created
for LINE, SURFACE and POLYHEDRON, e.g. the tables using
varrays are given bellow:

LINE_A ({LID, NUM, NLISTA}, {LID})
SURF_A ({SID, NUM, NLISTA}, {SID})
PHED_A({BID,NUM,NLISTA},{BID})

5.4 Using the spatial data types of Oracle
Currently Oracle Spatial has implemented only the geometry
object model as it is specified in Open GIS specifications. This
means that all the supported shapes (i.e. geometric objects in
Oracle Spatial) are represented by their co-ordinates.
Consequently, if two objects share co-ordinates, they are stored
two times in the database. The topological operations are then
explicitly computed when it is necessary. Furthermore the
implemented topological operations are limited to cases in 2D
space. Hence, the utilisation of the spatial objects for our model
is rather limited. The only straightforward possibility is to
represent NODE object by the Oracle shape SDO_POINT. The
description of the shape SDO_POINT and NODE are identical.
The advantages and disadvantages of such representation are
to be further explored.

6 OPERATORS TO RETRIEVE THE GEOMETRY

The model presented in the previous sections does not have a
direct link to the geometry of the objects, i.e. the co-ordinates of
objects have to be derived. The operators to convert topology to
geometry depend on the geometric model and the implemented
mapping. It is possible to utilise the geometric model for spatial
objects defined in OpenGIS specification. However, within the
UbiCom project there is an agreement on adopting the
geometric model of VRML. This model (known also as a scene
graph) preserves the topology of each individual object or group
of objects. In this respect, the operators to create a VRML file
can be considered as operators for transformation from one
topological data structure to another and therefore they are more
sophisticated. For example, the SQL queries to retrieve the
geometry (co-ordinates) of a POLYHEDRON with identifier 23
from relational and object-relational (varrays) mappings are:

Relational:
select FID, SEQF, NID, X, Y, Z
from FACE, NODE, PHED
where PHED=23 and PHED.FIDB=FACE.FID and
FACE.NIDF=NODE.NID
ordered by FID, SEQF

Varrays (part of a PL/SQL script):
inid arra:= arra(0);
jj number (5);
t1 number(5);
t2 number(5);
begin
…
 select NUM, NLIST into t1, inid from FACE_A
 where FID=23;
 jj:=1;
 while jj< t1 loop
 select NID into t2 from NODE
 where inid(jj) = nid;
 jj:=jj+1;
 end loop;
…

Dynamic and Multi-dimensional GIS, Bangkok, Thailand, May 23-25, 2001

The result is a list of co-ordinates structured according to the
order of the faces and order of the nodes in a face. To create the
VRML file, the data set obtained with these queries has to be
further structured according the VRML model. In our example,
two options are possible to represent the faces constructing the
POLYHEDRON 23 in VRML, i.e. they can be stored as individual
faces or as a part of one polyhedron. The first option is simpler
and can be derived directly from the SQL query. The second
representation requires control of duplicated co-ordinates and
the correct ordering of the corresponding co-ordinates in the
description of the faces (i.e. in the VRML node coordIndex).
Currently, we concentrated on development of operators that
create a VRML file consisting of objects (i.e. not individual
faces). Since standard SQL statements cannot perform this
operator, the computations have to be completed with the help
of a host language (PL/SQL, C++, Java). At this stage, we have
used PL/SQL, i.e. the script language provided by Oracle.

A number of tests aimed at clarification of the best mapping and
fastest operators to retrieve the needed data. For the purpose
the first tree mappings discussed in the paper are implemented
and populated with data. The corresponding VRML creators are
tested for performance. Although the data structure is at very
initial stage, the first results are very encouraging: 20 000 faces
(part of 1600 buildings) can be retrieved in less then 23 seconds
for representation with nested tables and less then a second for
the relational representation and object-oriented views. The
conditions of the test and the data sets are reported and
discussed in more details in [17]. In principal, we expect less
data to be extracted for rendering, i.e. the objects that are visible
only from the current position of the user. These data are
estimated in the range between 50 and 5000 faces if spatial
search is applied. This is indication for a possible further
improvement of the obtained results.

7 CONCLUSIONS
We have presented a 3D topological structure that provides data
for a real time application i.e. serves two tasks (pose
determination and rendering of virtual objects) that require real-
time commuting. The proposed structure maintains four
abstractions of geometric representation (the ones mostly
employed in 3D modelling) based on two constructive elements
(faces and nodes). To be able to provide “cheap” details in terms
of line features, the model incorporates non-topologically
organised data, i.e. lines. Explicit relationship links a set of lines
to a face. To be able to achieve the required accuracy and to
build the 3D topology, a number of 3D reconstruction methods
are applied. The model is implemented in relational database
Oracle utilising relational and object-relational mappings.
Several operators to create a VRML file are created and tested.

The experiments clearly show that a 3D topological model can
be adopted for an augmented reality application. The
performance of the mappings in relational database drops
bellow the required 6 seconds. The methods utilised in the 3D
reconstruction ensure accuracy of few decimetres that is agreed
to be sufficient for the positioning system. Therefore we consider
the results reported in this paper a successful step toward a 3D
GIS supplying data for a real time application.

Still more experiments are needed to clarify the relational
mapping that will assure the best performance. Currently, the
SQL queries are executed from the Oracle high-level language
that cannot be integrated in the UbiCom architecture, i.e. C++
modules have to be developed and further tested. Location and
efficient spatial search in such large databases can not be
performed without appropriate spatial indexing. One of the
directions for further research within the project is related to
developing a set of specific operations than will reduce the
amount of data transmitted to the vision system. Examples of
such operators are determination of the area of interest (using
approximate positioning obtained by the mobile equipment),
back-face culling (to eliminate invisible faces) and a variety of
line filters for retrieval of line features.

References

[1] Abiteboul, S and R. Hull, 1987, IFO: A formal semantic

database model, ACM Transactions on Database Systems,
Vol.12, No.4, pp. 525-565

[2] Bodum, L., I. Afman and J. Smith, 1998, Spatial Planning
moves out of the flatlands, AGILE, 23-25 April, Enschede,
The Netherlands, CD-ROM

[3] de la Losa, A. and B. Cervelle, 1999, 3D topological
modelling and visualisation for 3D GIS, Computer&
Graphics, Vol.23

[4] Kofler, M. and M. Gruber, 1997, Toward a 3D GIS
Database, GIM, Vol. 11, No. 5, pp. 55-57

[5] Molenaar, M., 1990 A Formal Data Structure for 3D Vector
Maps, Proceedings of EGIS’90, Vol. 2, Amsterdam, The
Netherlands, pp. 770-781

[6] OpenGIS specifications, 2000, available on
http://www.opengis.org/techno/specs.htm

[7] Pasman, W., A. van der Schaaf, R.L Lagendijk and F.W.
Jansen, 1999, Low latency rendering for mobile augmented
reality, Proceedings of the ASCI'99, 15-17 June, Heijen, the
Netherlands, pp. 372-376

[8] Persa, S and P. Jonker, 1999, On Positioning Systems for
Augmented Reality Applications, Handheld and Ubiquitous
Computing 1999, Springer Lecture Notes in Computer
Science 1707

[9] Pilouk, M., 1996, Integrated Modelling for 3D GIS, PhD
thesis, ITC, The Netherlands, 200 p.

[10] Pigot, S., 1995, A Topological Model for a 3-Dimensional
Spatial Information System, PhD thesis, University of
Tasmania, Australia, 228 p.

[11] Ubicom project, 2000, available on
http://bscw.ubicom.tudelft.nl/

[12] van Oosterom, P., 1997, Maintaining consistent topology
including historical data in a very large spatial database,
Auto Carto 13, April, Seatle WA, pp.

[13] Verbree, E., G. van Maren, R. Germs, F. Jansen and M.J.
Kraak, 1999, Interaction in virtual world viewslinking 3D
GIS with VR, Int. J. Geographical Information Science,
Vol13, no 4, pp. 385-396

[14] The Virtual Reality Modelling Language, 1997, available on
http://www.web3d.org/technicalinfo/specifications/vrml97/in
dex.htm

[15] Zlatanova, S., 2000, 3D GIS for urban development, PhD
thesis, ITC public. 69, Enschede, The Netherlands, 222 p.

[16] Zlatanova, S., J. Paintsil and K. Tempfli, 1998, 3D object
reconstruction form aerial stereo images, Proceeding of the
6th International Conference in Central Europe on
Computer Graphics and Visualization'98, 9-13 February,
Plzen, Czech Republic, pp. 472-478

[17] Zlatanova, S. and E. Verbree, 2000, A 3D topological
model for augmented reality, Proceedings of the Second
international symposium on MMSA, 9-10 November, Delft,
The Netherlands, pp. 19-26

BIOGRAPHY
Siyka Zlatanova:
MSc degree at the University of Architecture, Civil Engineering
and Geodesy, Sofia, Bulgaria in 1983 (Geodesy and
Photogrammetry). PhD degree at the Graz University of
Technology, Graz, Austria. Currently, a post-doctoral researcher
at the Delft University of Technology, Delft, The Netherlands.
Research field: Spatial Data Handling, 3D topology, 3D object
reconstruction and visualisation.

http://www.opengis.org/techno/specs.htm
http://bscw.ubicom.tudelft.nl/
http://www.web3d.org/technicalinfo/specifications/vrml97/index.htm
http://www.web3d.org/technicalinfo/specifications/vrml97/index.htm

	INTRODUCTION
	REQUIREMENTS
	3D DATA STRUCTURING
	DATA COLLECTION
	IMPLEMENTATION
	Relational implementation
	Object-oriented views
	Object-relational implementation
	Using the spatial data types of Oracle

	OPERATORS TO RETRIEVE THE GEOMETRY
	CONCLUSIONS

