
Data Structuring and Visualization of 3D Urban Data
Some Aspects of the Doctoral Research “ 3D GIS for Urban Development”

Siyka Zlatanova, PhD candidate
Dr. K laus Tempfli , supervisor

ITC, 7500 AA P.O. Box 6, Enschede, the Netherlands
zlatanova@itc.nl, tempfli@itc.nl

Keywords: 3D GIS, VRML, data structuring, visualization, interaction, WWW

Abstract

The major idea of the current research is to build a concept for a 3D GIS appropriate for maintenance and
real-time manipulation of municipali ty data via Internet. A model containing geometric and thematic
information about objects, spatial and thematic relationships should be developed. The research focuses the
geometric aspect of the problem with emphasis on development of a scheme to exchange data between the
database and rendering engines for visualization, navigation and manipulation.

The approach for visualization and interaction is based on the utili zation of Virtual Reali ty Modeling
Language (VRML) and 3D Formal Data Structure (3D FDS). The VRML is chosen to model the scene for
visualization, i.e. to describe geometry, introduce dynamics, ill uminate the model, work via Internet, while 3D
FDS is considered as basic data structure for data storage and spatial analysis.

A variety of visualization queries were performed in order to test suitabili ty of the couple 3D FDS and VRML
for interaction with the model via Internet. The results of queries were visualized in HTML and VRML
browsers. The experimental work has revealed several shortcomings of 3D FDS with respect to fast
composing of the VRML file:

1. The storage of coboundary relationship per face, i.e. left/right body, imposes maintenance of information
about “air” body and “underground” body, which speeds down the formation of surfaces and bodies.

2. The explicit storage of boundary relationship per arc, i.e. begin /end node, does not show many
advantages but requires extra traversing of one more table for visualization.

3. The implicit description of “holes” complicates the algorithms for coordinates extraction.

It can be concluded that all the necessary information for visualization of point, line, surface and simple body
objects can be extracted from the 3D FDS. However, organization of data is not eff icient to supply data for the
followed approach.

One direction of the future work is related to extension of the conceptual model toward refinement of the
object identification, aggregation of multi-dimensional objects, definition of parameters describing behavior of
object, developing a technique supporting LOD visualization. Another aim is refinement of the concept for
partitioning of the objects, especially surface objects, in order to avoid rendering pitfalls. The aspects
addressed here contribute to clarification of a strategy for real-time manipulation of data.

1. Introduction
The investigations of the current research are towards a strategy for a 3D GIS capable to deal with 3D urban
information, allowing interactive spatial queries via Internet. Each of these key issues requires specific
consideration and influences the selection of: 1)methods to collect data, 2)approaches to organize, retrieve and
maintain information and 3) techniques to visualize, navigate and interactively query the model (Tempfli and
Pilouk 1996).

3D urban data have always been diff icult to organize basically due to the complex geometry. Variety of
regular and irregular shapes, overhanging elements, concave shapes, multi-layered constructions, etc. are some
of the trouble stones. The complexity requires appropriate subdivision of the space for simpli fication of the
data set and facili tation of data storage. In contrary, attribute and thematic data very often are assigned to
composition of objects. The quite large amounts of data (geometry, text, texture) bring up questions of storage
on distributed systems and special structuring of data (e.g. LOD for geometry and texture) for fast rendering.

A new aspect of the pursued 3D GIS is the manner of query and display of the outcomes. In the years of fast
hardware and software development it is impossible to overlook some existing techniques for visualization and
navigation through models. At least low level virtual reali ty (VR) techniques like walk-through fly-over,
examine, etc. has to be offered to improve legibili ty of data, facili tate manipulation and orientation inside the
model. Many software vendors already provide either tools to navigate through the model or export files which
can be visualized in VR browsers. Techniques for introducing and controlli ng dynamic objects are already
standardized and platform independent. Therefore, working on a 3D data structure, relevant information for
visualization and interaction should be considered. The scope of the information stored per object has to be
extended to embrace data and parameters for scene creation and dynamics.

The users of urban data are usually from various companies (e.g. municipali ty, electrical, water&sewage
companies, tourist agencies, etc.) distributed in different building and parts of the town. Remote access to the
information is obligatory if we want to: 1)to reduce the time and man-power for service and 2) to eliminate
visiting the GIS server to request information. One way is to build an Intranet network only among the users.
Ànother way is to connect to Internet and fetch information via Internet. In both cases client-server connection
should be established (see Figure 1)

Among the various problems related to 3D VR GIS the
presented paper focuses on several issues related to
appropriate data structure for storage and retrieval of
information not only for spatial analysis but also for
visualization. First, a short explanation of the method for
visualization and query will be given, second, the structure
of VRML and 3D FDS will be clarified and finally some
conclusions and recommendations about 3D FDS as a data
structure capable to store data and respond to queries via
Internet will be presented.

2. The approach
The approach followed in the research is based on a combination of tools and techniques for access and
exchange of data via Internet/Intranet (see Figure 1). Text information is visualized in the HTML and the
VRML is utili zed for graphic information. This implies that the user has to be provided with software to
browse text and graphics at the client station. The client works on a subset of the information (graphic model
or text in form of tables, lists, etc.) which physically can be either on the server or copied to the client
computer. The process of query, visualization and modification has several stages:

WWW

Local Client Remote Client

GIS SERVER

Figure 1: Client-server 3D GIS

1. User identification. At this stage a broad spectrum of important issues related to the protection of the
database, multi-user access, priority for modifications, etc. has to take place. Since the problems are
beyond the scope of the research, they will not be discussed further.

2. Query. The steps to request information are standard and widely implemented for various purposes
(purchasing, searching). After user identification, the web server returns an initial form, where the user
can specify what kind of information he/she needs. The form is fill ed out by the user and send by the web
browser at the client station (see Figure 2) back to the web server. The server executes a script which
extracts the necessary information from the data base, creates (on fly) a certain file (or files) and returns
the result to the client. The simplest request to the web server is to return the URL of a file which already
exist, e.g. a file with the 3D graphic model of the entire town. Most often, however, the queries to the GIS
server will be initiated by a user action inside the 3D model, e.g. the click with the mouse on a building
can be interpreted by the browser as request of information about the owner of the building.

3. Data visualization. The information received at the client site is visualized either in a HTML browser

(text, 2D graphics, etc.) or in a VRML browser (3D graphics and text). The user can interact with the 3D
model inside the VR browser, fly-over, walk-trough, examine and at the same time browse text
information in the HTML browser. This can be displayed at the client screen in several ways: one window
with several frames (see Figure 3a), several new windows (see Figure 3b) or combinations of them. The
individual windows provide the user with more freedom to resize and adjust observed models, however,

Scr ipts: Java,
Javascript, VBSscrip t

C G I s c r ip t s

database query&modification local query&modification

Database

Web
server

VRML
browser

Web
browser

GIS Server GIS Client

Figure 2: Data flow in client-server 3D GIS

a) one window b) several separate windows

Figure 3: VRML and HTML browsers at the client station

they complicate the control on displayed information and very soon create chaos on the client desktop. The
way to visualize 3D graphic information on the Internet is similar to visualization of text information. A
file with complete description of the scene for visualization, i.e. geometry, text, lights, texture, camera
position, is created. The file is processed further by a VR browser which parses the information and
creates a scene graph. In fact the VR browser plays the role of the rendering engine in our approach.

4. Data modification. The term “data modifications” states for each change with the data set (geometry and

text). Graphic data modification can be deletion, adding, changing some values in the data set. When the
changes cover very large areas, indeed, automatic methods should be developed. Our interest, however, is
in small changes which the user prefers to make manually. For example, texture changing for simulating
future changes of facades, operations on geometry for setting up a new building, positioning of trees to
design vegetation. The way to make such small modifications of geometric information is to utili ze
techniques provided by the VRML, i.e. sensors, interpolators, or by scripts (Java, JavaScript or VBS
scripts) written by the user and supported by the browser at the client station. The scripts run only at the
client side and do not influence the information on the server, neither the other clients. If the user is
authorized to change the information in the data base he has to follow a fill _out procedure similar to the
query of database, i.e. a form with desired parameters for modification and their new values has to be
fill ed in and sent to the server for processing by a CGI script on the server (see Table 1).

 Table 1: Techniques for interactive manipulation of 3D GIS data
local changes global changes

server (database) CGI scripts database updating software
client VRML, Java, etc. VRML, Java, etc.

Flexibili ty of the system in terms of an easy adjustment for various tasks, hardware and software independence
of the clients, are the major advantage of the approach. The software development does not need to start from
scratch. Many software modules already exist, e.g. fill -out forms, SQL scripts to access databases, security
techniques, etc. A significant advantage is the use of Web and VRML browsers for display, which in practice,
releases the software developer of the tedious work on graphics user interface. The approach ensures easy, low
cost, standardized access to 3D models.

3. Data structures
One of the big challenges in 3D urban modeling is the visualization process with respect to increase readabili ty
of data and realism of the model. Another advanced issue is interaction with the model and dynamic
modifications, which require clarification of object’s behavior. With respect to data structuring this means
1)enhanced attribute information related to the visualization of geometry, e.g. material and color for rendering,
texture for texture mapping, 2)parameters characterizing the behavior of dynamic objects. The strategy for
visualization and manipulation, described above, implies that VRML is used for scene design. Another data
structure, i.e. 3D FDS is used for data storage. Apparently, the major operation within the
query&visualization process is a conversion between 3D FDS and the standard VRML. Therefore, first, we
will make short overview of the mechanisms provided by the VRML to model 3D objects and after that we
will clarify the concept of 3D FDS.

3.1 VRML
Among the rendering languages, VRML is a high-level language for scene modeling providing not only
techniques and methods for rendering but also dynamics. The dynamics range from techniques to play
animation to detecting user actions (e.g. “mouse click”) and consequent reaction of objects. In this aspect the
methods provided by the language can be classified as methods for scene design (geometry, lights, textures,
etc.) and methods to bring dynamics.

The geometry can be performed by using predefined shapes (cone, box, sphere, etc.) or by sets of faces, lines
and points. Since most of the geometry in urban areas is derived from measurements, it is diff icult to operate

with predefined shapes. Therefore we will concentrate on the way VRML handles irregular shapes. The main
unit in the VRML is an object named node that can be everything, e.g.. geometry, text, view. The node dealing
with geometry is Shape, which has three basic elements: appearance, geometry and behavior. The appearance
contains data for rendering, behavior can be simulated by a combination of sensors for detection of user’s
actions and interpolators for changing object’s parameters.

The geometry is presented by two lists: 1) the set of the all point coordinates composing an object and 2)
ordered lists of points constituting the bordering faces (see Figure 4). The model created in this way is a
typical shape model. Each solid object can be expressed as a function of faces and each face as function of
vertices. There is no principal difference in geometry of surfaces and solid objects. Line objects are lists of
vertices. The objects are embedded in Euclidean space.

The language follows an object oriented approach ensuring aggregations, encapsulation, classification, and
inheritance mechanisms. Topology is build only among the vertices constituting one object. Despite the abili ty
to create aggregations of objects, relationships “ inside” can be derived only by metric computations.

The VRML is quite suitable for urban modeling giving answer to some important questions, e.g. how to
increase the realism, how to visualize data in a faster manner. The solution of the VRML for realism is
several operators allowing mapping of real photo images onto geometry. The way of mapping requires surface
objects textured with the same image file to be grouped (separated) in one object (see Figure 4, shape roof). A
special node permits Levels of Detail (LOD) techniques to be applied during visualization. The technique is
simple and quite effective for real-time interaction with the model (Gruber et al. 1997). One object has several
geometric descriptions (usually three): very detailed, e.g. all geometric details of the buildings plus texture;
less detailed, e.g. only geometry without texture and coarse, e.g. only outlines of the buildings. The browser
uses these several geometric descriptions per object for near and distant views, i.e. when the object is far way
from the observer a less detailed geometry is used.

In conclusion, the language is very flexible for composing objects, creating dynamic scenes, interactive work
via Internet, however, it is appropriate neither for data storage nor for performing spatial operations nor for
fast rendering. It could be considered an intermediate step between data storage and visualization. The browser
creates its own scene graph (a kind of hierarchical data structure) for real time visualization and applies the
needed algorithms for rendering.

Figure 4: Modeling with VRML

3.2 3D FDS
3D FDS was chosen for a basic data structure due to: abili ty for thematic and geometric description per
objects, vector approach to build geometry and 3D topology, expressed mainly as boundary relationships
(Molenaar 1992). The data structure was tested already for various spatial analysis and promising results

were obtained (Rikkers et al. 1993, Pilouk 1996). Three levels can be distinguished in the model: two for
geometry and one for thematic classes (see Figure 5). Twelve conventions clarify model constraints, rules for
decomposition and intersection.

The first fundamental assumption is a full subdivision of the space, which implies that 1)the border between
two n-D objects is always only one (n-1) D object (n = 1,2,3) and 2)outer space (air) also should be considered
an object. The approach is opposite to the one followed in VRML, where composite of objects are build up,
without information about the adjacent objects.

The other fundament of 3D FDS is “ the single valued map”, i.e. a geometric primitive (node, arc, face and
edge) can appear in the description of only one elementary object of the same dimension (Molenaar 1989). In
contrast, the VRML allows one primitive to be part of several objects. The idea of single valued approach is to
partition the space into non-overlapping (only relationship “meet”) objects (0,1,2,3 D) and thus ensuring 1:1
relationships between objects and primitives of same dimensions, e.g. surface and face. In fact, the data model
is a partition of non-overlapping elementary objects of the same class. Some elementary objects from different
classes can overlap, e.g. relationships “node on face”, “arc on face” are explicitly stored.

The structure has node, arc, edge and face as constructive primitives. The primitive edge is introduces only
as a supporting element, defining left and right, however, it contains the orientation of the faces, which is
important information for rendering engines, indicating which side of the face to be colored.

4. Implementation of the model (relational data structure)
The conceptual model was tested, first for suff iciency of data to create the scene for visualization in the
VRML and second, for eff icient traverse of the database to guarantee reasonable fast on-fly creation of
documents on the server. We used the implementation of 3D FDS into relation data structure presented by
(Rikkers et al. 1993) and extended by (Tempfli and Pilouk 1996) for texture storage. The data model is
mapped into 13 normalized tables (see Figure 6a). All the tables were realized (Paintsil , 1997) except “node on
face”, “node in body”, “arc on face”, “arc in body” (see Figure 6b). Tables are stored in flat files and software
to build the scene with VRML was developed. The experimental data set consists of buildings (body), surface,
line and point objects from the central part of Enschede. The model is constructed by a semi-automated
procedure developed at ITC (Zlatanova et al. 1998).

Rep r esents

C l a s sC l a s sC l a s s

F a c e

E d g e A r c

X Y Z

Bo r der

Le ft

Beg in

End

Is o n

Is in

Part of

Is in

Is o n

Backw or d

Fo rw ard

C l a s s

P o i n tL i n eB o d y

Part of
Rig ht

N o d e

Geometric
objects

Belo ng s to Be lo ng s to Be lo ng s to Be lo ng s to

Geomertic
primitives

S u r fa c e

Figure 5: 3D FDS - conceptual model

Since the data structure was tested mainly in the geometry domain, thematic analysis will not be discussed
here. The queries of interest for our approach are related to extraction of geometric information: coordinates,
composing geometry of an object and the correct order of points bordering a face.

These queries, which we will name visualization queries, have two specific characteristics:
• the traverse starts always from the highest level, i.e. object level
• the traverse always ends on the lowest level, i.e. coordinates.

For example, to extract the coordinates of a body object, all the tables, i.e. BODYOBJ, FACE, EDGE, ARC
and NODE, have to be visited. The time needed to scan the data base is proportional to the number of objects
to be included in a VRML file. For example, the user has a VRML file of the entire model and wants to see the
shortest way to a shop. He initiates a query and fill s-in a form with the desired information, e.g. the address of
the shop and the address of his location. All the needed objects inside the requested area are selected and then
the visualization query is executed, i.e. “ collect coordinates and description of faces/lines per object” . After
that, highlighting the selected objects by changing their color or appropriate animation should be applied.
Note, that the query and creation of the VRML file have to be executed on a remote server and the resulting
file has to be transferred back to the client. It is apparent that the time for traversing the database is crucial for
the system.

A close look at the process of creating a VRML file reveals some disadvantages of the relational organization
of data. The first problem comes from lack of explicit relationship face part of body . The query “collect all
the faces composing a body” requires entering and traversing the FACE table each time when a body or
surface object has to be included in the VRML file. Sometimes the number of faces, composing one building
can grow tremendously, e.g. up to 4000 triangles for the new ITC building. Automatically generated DTM
leads also to large amounts of triangles.

The compulsory storage of left and right body per a face introduces a lot of useless repetitive information. For
example, the information stored in the FACE table for a DTM is:

 Table 2: Example of DTM data stored in the FACE table
fid bodyleft bodyright fpartofs
… … … …

1245 -1 0 5
1246 -1 0 5
1247 -1 0 5
… … … …

where 0 stands for air, -1 for underground and 5 is the identifier of the surface.

bid sid lid pid nid

arcendarcid xc yc zcnid

aisninbarcid

arcid aisonf

apartoflarcid

nid

nid

nisonf

nisinb

pclasslclasssclassbclass

BODYOBJ SURFACEO LINEOBJ POINTOBJ

arcpofl

arc node

arconf nodeonf

arcinb nodeinb

enoseq

face

arcbeg

arcid forbackfid

fid fpartofs bidleft bidright texturef

edge

SURFACEO
sid sclass

BODYOBJ
bid bclass

LINEOBJ
lid lclass

POINTOBJ
pid pclass nid

FACE
bidrightbidleftfid fpartofs

EDGE
enoseq forbackarcidfid

ARC
arcendarcbegarcid

NODE
zcycxcnid

ARCPOFL
arcid apartofl

texturef

a) all the tables b) implemented tables

Figure 6: 3D FDS - relation model

An improvement could be obtained if the FACE table is released a bit of all the data. The table contains links,
which provide all the faces composing both body and surface. The way of storage has the an apparent
advantage for the link body-surface. However, it is diff icult to predict for a particular area how many surfaces
will be formed and certainly not every face is a part of surface. Therefore, the table face can be further
normalized and the link face part of surface can be separated. This step limits search for all the faces
composing a surface only among the surface objects and avoid the traverse of the FACE table.

The previous step influences, however, the storage of the texture reference. In this research, real-photo images
are used for texture. In this context, the field texturef points to a separate table containing the name of the
image file (JPEG, GIF, PGN) and a list of 2D texture coordinates for mapping onto geometry. The texture
information is a type of attribute data related to the geometry of the objects. One object (body or surface) can
be textured with several images and one image file can be used for several surfaces. The approach followed in
this research is a separate image file for texturing per face. More details related to this topic can be found in
(Sithole 1997). An advantage of this approach is the ease of data storage, while a limitation is the
impossibili ty to wrap a surface with one image file. In many cases draping with one image file is much more
eff icient, e.g. a DTM. To avoid this limitation the reference to the texture can be replaced in the table
FACEPOFS and enumeration of the faces part of surface has to be provided (see Figure 8a).

As was stated before, an indication which side of the face is textured can be necessary, e.g. two adjacent
buildings with a common wall (see Figure 4). This is quite important issue for dynamic modeling: suppose the
user shifts body2, both the wall of body1, which consists of face1 and face2, and the wall of body2 have to
have appropriate texture. For the purpose, a new column orient should be added in the table FACEPOFS (see
Figure 8a). A record in the FACEPOFS table is created only if the surface is created or texture exists. In other
words in each case of existence of texture a surface object should be created. The procedure for constructing
textured body will be: 1)collect all the faces from face table, 2) compare orientation of the collected faces and
the orientation in facepos and assign the corresponding texture.

Modeling of line objects with VRML showed that visualization of simple lines does not provide realistic view
of the object. Better performance can be achieved if tiny cylinders instead of lines and small spheres instead of
points are used. Line modeling with predefined primitives (cylinders, spheres, etc.), however, require begin and
end of line object to be established. The information in 3D FDS (only arc identifiers) is suff icient to construct
the line object, however the direction of the entire object is not known. The storage of the direction will speed
up the process of extracting data for visualization, as well . The order of nodes is needed, which makes the
problem similar to order of nodes in edges, where forward/backward information is kept. Only a list of arcs
will give the sequence of nodes but not beginning and end of the lines. Therefore a column with enoseq is
added to the ARCPOFL table (see Figure 8b).

The tables ARCINB and NODEINB rise the question about
li ne and point objects inside the body “air” . In practice,
every line object such as lamp, traff ic light, or point object,
which is outside the buildings has to be registered in these
tables. Although this issue is not related directly to the
visualization process, it influences data storage, data editing
and updating. Deletion of an object, which is inside the “air”
body demands changes of the corresponding records in these
tables. A better solution is the storage of only those line and
points objects, which are inside other than ”air ” bodies.

The data structure keeps explicitly the relationships “node on face” and “arc on face”. These relationships are
problematic for visualization in case of faces which are not triangles. In general, there is no conflict between
the VRML and the3D FDS in the representation of faces with more than three nodes. The limitation comes
from the rendering engines, which deal only with triangles. All the other faces are subdivided by the rendering
engine (in our case a VR browser) into arbitrary triangles. However, variety of artifacts (e.g. an arc flying
over the face) is observed on the screen, if an arc of “arc on face” relationships is not included into

face1

face2

body1

body2

face2

face1

face2

the "wall" of body2

the "wall" of body1

face2 is part of two surfaces

Figure 7: An example of a face needed two
textures

triangulation. The pitfall i s observed even if the face is strictly planar and the arc lies exactly on it. That is to
say the arcs and nodes have to be incorporated in the triangulation. The solution is not so simple. One way is
algorithms for triangulation on fly, prior the creation of a VRML file format to be performed. Created
triangles, however, are not part of the database and eventual changes in the geometry are diff icult to be
handled. The other way to avoid the problem is the storage of triangulated faces, which delivers new problems
which will be discussed later. The obvious advantage is elimination of “arc on face” and “node on face” tables.

A similar problem arises in case of visualization of holes. Most computer graphics models are based on the
properties of 2D manifolds, which implies so called “opening” of the holes, i.e. connecting to the bordering
face, to be performed. Not all the VR browsers can handle rendering of holes, but the capable ones require
opening, which can be achieved by a special ordering of the nodes. Only in this case the face is triangulated
correctly by the browser and the holes are visible. For example, the nodes on Figure 9b should be in the
sequence 1,2,5,6,7,8,2,3,4,11,12,9,10,11,1. 3D FDS has no special indication of a hole. Holes are stored
together with the parent face as the arcs bordering a hole are in opposite direction to the arcs bordering the
face (see Figure 9a). Clearly, the holes can be recognized as the necessary order can be obtained by checking
arcend/arcbegin relationship per arc in ARC table. This operation has to be performed for each arc, bordering
a face. The more simple solution is subdivision of the face into triangles or convex figures.

Concave faces are another tricky issue of visualization. The
algorithms for triangulation of multi-edges faces which are
used by the browsers, need to be very fast in order to safe
CPU time and as consequence of this very simple. They fail
in most of the cases to triangulate concave faces (see Figure
10). Therefore, a parameter to indicate concave faces is
included in the VRML. The parameter alarms the browser
for a concave face and more sophisticated algorithm for
triangulation is executed. The disadvantage is that the
algorithm speeds down the visualization and should be used
only when it is necessary. This implies that a flag for

concavity of faces has to be available in the database. Again another solution is the prior triangulation of the
faces.

Clearly, several problems, i.e. holes, concave shapes, “arc on face”, “node on face”, planarity of faces find
their solution in further partition of faces into triangles. A well known disadvantage of a full triangulation of
the model is the significant increase of data: a subdivision of a face bordered by n-arc (n>3) leads to (n-3)
additional faces and (n-3) new arc. The growth of information is even faster for faces with holes, as the rate
depends on the number of holes. The image pieces used for texturing also have to be subdivided and we face
again enormous rise of data: triangular pieces of texture require larger storage space.

bid sid lid pid nid

fid bidleft bidright

arcendarcbegarcid xc yc zcnid

aisninbarcid

arcid aisonf

apartoflarcid

nid

nid

nisonf

nisinb

pclasslclasssclassbclass

BODYOBJ SURFACEO LINEOBJ POINTOBJ

arc node

arconfface nodeonf

arcinb nodeinbedge

arcpofl

fid textureforient

facepofs

fpartofs

enoseqfid arcid

bid sid lid pid nid

fid bidleft bidright

arcidenoseqfid

arcendarcid xc yc zcnid

aisninb

aisonf nid

nid

nisonf

nisinb

pclasslclasssclassbclass

BODYOBJ SURFACEO LINEOBJ POINTOBJ

arc node

arconfface nodeonf

arcinb nodeinb

apartofl

arcpofl

edge

fid textureforientfpartofs enoseq

facepofs

arcbeg

enoseqarcid

arcid

arcid

a) a separate table for face part of surface b) ordered faces in FACEPOFS and arcs in ARCPOFL

Figure 8: Modifications of 3D FDS

a1

a2

a9

a11

a12

a3

a4
a6a8

a7

a5
a10

a1

a2

a9

a11

a12

a3

a4
a8

a7

a5
a10

9

12 11

10

a6

8
5 6

7

3 4

12

a) b)

Figure 9: An example of a face with holes

Therefore, we consider the partition into convex faces the most suitable way to avoid a variety of modeling
problems mentioned above. In general, the subdivided faces can be organized in 3D FDS but for the price of
more data for storage.

One of the differences between 3D FDS and the VRML is related to the primitives used for description of
objects. The 3D FDS maintains arcs, which is not a case in the VRML. In the 3D FDS, arcs are used only to
express relationships among nodes, i.e. adjacency of nodes and establish their order, i.e. one of the nodes is
first. These arcs are building elements for line objects and edge primitive, which are again sequences of arcs.
Clearly, no other information than the order of nodes can be fetched from the ARC table. On the basis of this
consideration we suggest to eliminate the ARC table from the data structure. A line object and edge primitive
will be sequences of nodes (see Figure 11). The substitution of sequence of arcs with sequence of nodes in the
LINE and EDGE tables will not increase the number of records drastically: it remains the same in the EDGE
table and increases with one per line in the LINE table. Consequently, the global effect of this modification of
the model will be significant reduction of data. The ARC table is one of the largest tables. The results of
experiments with triangulated surfaces show that the ratio faces:arcs:nodes is 2:3:1. With elimination of the
ARC table relationships “arc in body” and “arc on face” are also superfluous, because “node in body” and
“node on face” will present the same spatial relationships. Further investigations, however, are necessary for
the influence of this modification in spatial analysis domain. Deficit of arcs in a data model will complicate
some spatial analysis with line objects. For example, the query “ find with bodies are intersected by a given
line” , requires more operations than one presented in (Rikkers et al, 1993)

The last problem concerning 3D FDS is related to organization of supported by the VRML LOD. The LOD
can be predefined and stored in the database or they can be created on fly. The lack of a technique to assign
more than one geometry description to an object, in practice, makes impossible the extension of the data
structure to maintain LOD.

a) correctly rendered concave face b) incorrectly rendered concave face

Figure 10: Rendering pitfalls

bid sid lid pid nid

fid bidleft bidright

nidenoseqfid

xc yc zcnid

nid

nid

nisonf

nisinb

pclasslclasssclassbclass

BODYOBJ SURFACEO LINEOBJ POINTOBJ

node

face nodeonf

nodeinbedge

nidenoseqlid

line

fid textureforientfpartofs enoseq

facepofs

Figure 11: A data structure without arcs

5. Conclusions and further research
The work on modeling urban areas utili zing the 3D FDS and the VRML revealed several obstacles, which
make the combination not so successful. The first question of our investigations referred the adaptabili ty of the
3D FDS to contain information suff icient for the scene design. The answer is positive: the 3D FDS supplies all
the geometry information (coordinates, faces) needed for 3D visualization. Further elaboration of data
structure could permit information about geometry attributes and behavior to be maintained. More
sophisticated organization of texturing data has to be performed to enable advanced texturing techniques.

The troubles come with the dynamic query and adequate responses by the model in relatively fast manner. We
have found the 3D FDS quite slow and not appropriate for real-time editing and manipulation via Internet.
Based on our implementation work we figured out some week sides of the data structure, which can be
summarized as follows:

• lack of spatial indexing: all the constructing primitives are stored in only four tables which have to be
scanned for each object

• lack of explicit boundary information per body object, which requires collection of faces from the FACE
table.

• storage of arcbegin/arcend relationship, which complicates algorithms for coordinate extraction.
• storage of coboundary relationship per face, i.e. left/right body, which leads to repetitive information
• the implicit description of “holes”, which requires more sophisticated and thus slower algorithms for data

extraction.
• explicit storage of relationships “arc on face” and “node on face”, which involves algorithms for

triangulation of the parent face
• single-valued concept, which makes organization of LOD and thus visualization of large photo textured

models, impossible

One direction of future work is extension of the model toward aggregation of multi-dimensional objects and
abili ty for parametric description. For the purpose, a data structure simpli fied to contain only faces and nodes
will be used as basic topological model, on which an R-three structure will be build up. We expect to be able
to organize easily several LOD and provide rules for aggregation of multi dimensional objects. Another aim is
refinement of the concept for partitioning of the objects, especially surface objects, in order to avoid rendering
pitfalls. The aspects addressed here contribute to clarification of a strategy for real-time manipulation of data
and corresponding data structure for organization of data.

References

1. GRUBER, M., M. KOFLER and F. LEBERL,1997, Managing large 3D urban data base contents
supporting photo texture and levels of detail , In Proceedings of the Ascona Workshop'97, automatic
extraction of man-made objects from aerial and space images, pp. 377-386

2. MOLENAAR, M., 1989, Single valued vector maps; a concept in Geographic Information Systems, GIS,
Vol. 2, No. 1, pp. 18-27

3. MOLENAAR, M., 1992, A topology for 3D vector maps, ITC Journal 1992-1, pp. 25-33
4. PAINTSIL, J., 1997, 3D Topographic Data by Aerial Photogrammetry, MSc Theis, ITC, 95 p.
5. PILOUK, M., 1996, Integrated Modeling for 3D GIS, PhD thesis, ITC, 200 p.
6. RIKKERS R., M. MOLENAAR and J. STUIVER, 1993, A Query Oriented Implementation of a 3D

topologic Data structure, In EGIS'93: Vol.2, pp. 1411-1420
7. SITHOLE, G.,1997, Digital photogrammetry for automatic photo-texture extraction, MSc thesis, ITC,

104 p.
8. TEMPFLI, K. and M. PILOUK, 1996, Practical Photogrammetry for 3D-GIS, In Proceedings of

ISPRS’96, Vol. XXX I, Part B4, pp. 859-867
9. ZLATANOVA, S., J. PAINTSIL and K. TEMPFLI, 1998, 3D Object reconstruction form aerial stereo

images, In Proceeding of the 6th international conference in Central Europe on computer graphics and
visualization'98: Vol. III , pp. 472-478

