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ABSTRACT
The maintenance, visualization and query of 3D urban data has always been problematic due to the complexity of
geometry, diversity of attribute information, large amounts of data, demanded comprehensive analysis and queries
requiring new techniques for visualization and query. The approach presented here aims visualization and query via
Internet and utili zes establi shed standards and techniques to access and retrieve remote data: Virtual Realit y Modeling
Language (VRML) and Hypertext Markup Language (HTML) to visualize respectively 3D geometry and text
information, Javascript and Common Gateway Interface (CGI) scripts to control the interaction and query of the three
dimensional Geographic Information Systems (3D GIS) on the Web.

The paper focuses a couple of aspects related to the data base structure on the GIS server: clarification of data needed
to create VRML and HTML documents, and data structuring according to an elaborated classification of the
information stored per object, i.e. attributes, connections (relationships) and functions (behavior), considering its
thematic and geometric aspect. A data structure capable to serve spatial analysis and to supply data for a VRML
document creation with abilit y to introduce and control dynamics of objects, is presented. Issues related to fast
navigation trough the 3D model, i.e. a mechanism to build LOD without storage of extra information are discussed
and some results of the usage of a R-tree structure to create Levels of Detail (LOD) are reported.

KEYWORDS: 3D GIS, VRML, WWW, GIS-server, R-tree, LOD.

1. INTRODUCTION

The growing interest in 3D urban data of wide range of
local and remote users, on one hand, demands a 3D GIS
providing extended techniques for data query,
visualization and interaction with 3D GIS data, as well
as, user-friendly, easy-to-use, standardized Graphics
User Interface (GUI). Improved possibiliti es to access
documents on remote hosts and establi shment of
standards (e.g. HTML to organize text, movie, image
data and VRML to visualize and interact with 3D
models, scripts to introduce and control dynamic), on
another hand, have brought the opportunity to work out a
strategy for a 3D  GIS on the Web.

The coordination between all the standards and
synchronization of the “query-response” process
contributes to the establi shment of specific requirements
and influences data organization. The paper discuses
these issues in the following sequence: first, a short
description of the approach for query and interaction is
presented; second, database requirements are discussed,
third a description of the data structure is presented and,
finall y, some implementation results are reported.

2. SYSTEM ARCHITECTURE

The system architecture for visualization and query,
presented here, is a typical client-server architecture: the
persistent data are stored on the server(s) and the client
accesses them from remote stations (see Figure 1). The

access to the data on the server is controlled by software,
i.e. Web server and a number of CGI sprits. The client
has to be supplied with HTML (Web) and Virtual Realit y
(VR) browsers at the client station to be able to observe
and interact with text and graphics data. Text, 2D
graphics, images, movies are organized in HTML files
(documents) and 3D graphic data (models, worlds) are
available in VRML files (documents). While the remote
retrieval of HTML documents is already well establi shed
everyday practice on the Web, the use of VRML for
modeling 3D models of real objects is still not so
popular. However, some papers presented recently show
increasing interest in the language, as well as its
suitabilit y to describe and interact with models of real
objects (Lindenbeck,1998; Schickler, 1997; Coors,
1998).

The system architecture is very similar to the one
presented in (Lindenbeck, 1998), however, the goal is
more broad. VRML in our approach provides not only
means supporting visualization of 3D geometry, but
mechanisms for interactive query of geometry. Compare
to the approach presented in (Coors, 1998), our approach
uses the GUI of the VR and HTML browsers to visualize
and interact with data and CGI and Javascript  scripts to
manipulate and query data respectively on the server and
the client station.

The process of client-server communication can be
described shortly as follows: the client sends a request
for information to the server using the VR or HTML



browsers, the Web server processes the request and
returns  the demanded data to the client station (see
Figure 1). Depending on the request and the type of the
data received, four fundamental phases can be
distinguished: 1)identification, 2)query, 3)visualization
and navigation, and 4)manipulation (see also Zlatanova
et al, 1998).

The identification phase clarifies users rights and
displays the starting HTML or VRML document. The
information needed is specified in the query phase. The
query can be formulated either in a HTML document by
fili ng out a form or in the VRML document by an user
action, e.g. “cli ck” with the mouse on an object from the
3D model. The Web server sends back to the browser
either a document existing on the server, or a document
created on the fly after completed query from the
database. The requested information, in form of HTML
or VRML document, e.g. a table with text data or a 3D
model of a particular neighborhood, is visualized in
HTML or VR browsers at the client station. In the
second phase, the user only retrieves information.

The third phase refers already the manner of introducing
changes in the data base or in the document, which is
active on the screen at the client station. The
modifications have two aspects: how to start and where
to execute them. The alteration can be initiated in two
ways (similarly to the data query): 1) inside the Web
browser by fili ng out a sequence of forms or 2) inside the
VR browser by interaction with the graphics. Concerning
the location, two types of data modifications can be
differentiated: locall y on the client station and remotely
in the database on the GIS server. The local changes are
based on: 1)the VRML document capabilit y to bring
information up to the client station without its immediate
visualization and 2)the execution of Java (Javascripts or
VBS) for changing certain parameters in the 3D model.
The data base changes can be completed by a sequence of
HTML forms for introducing new values, CGI scripts to
communicate with the Data Base Management System
(DBMS) and database operations (see Figure 1).

The major advantages of the approach compare to the
alternative standalone 3D GIS, can be summarized as

flexibilit y, extensibilit y and interoperabilit y. The system
can be easil y tuned for a variety of outcomes. The
documents created are standard documents that can be
freely distributed across the Web. The use or VR and
Web browsers, HTML fill -out forms familiar from many
other applications on the Web, prevent the development
of special GUI, which is a time consuming task. The
approach followed does not require special hardware. In
case of slow connection to Internet, the documents can
be displayed after creating a copy at the client station.

3. REQUIREMENTS TO THE DATABASE

The analysis of the system architecture described above,
reveals the need of data restructuring: 1) from the data
structure used for data storage to the structure of VRML
and HTML documents and 2) from VRML/HTML to the
internal data structure of the VR and HTML browsers.
The focus here is on the organization of data in the
database. The second transformation is automaticall y
done by the HTML and VR browsers and therefore is a
responsibilit y of the developers of browsers.

Clearly, the data structure in the data base should be
appropriate for both GIS analysis (thematic and spatial)
and composition of documents (HTML and VRML).
Since the visualization of 3D geometry is based on
VRML, data to be visualized and the manner of their
structuring are closely related to the concept of the
VRML data structure (see Ames A.L, 1996). The
documents created in most of the cases on the fly have to
consume as less time as possible. Bearing in mind these
two factors, we can summarize the following
requirements for a data structure:

• Information about appearance. The VRML
document contains two groups of data to describe
appearance of objects on the screen: 1)data to define
shape and position in the modeling space and
2)parameters to describe the physical appearance of
the surfaces of the objects The information about the
first group of data is usually provided by set of
ordered points and their coordinates. The
information about surface of the objects can be
expressed by color variations or textures to cover the
geometry with image files. Since the complexity of
shapes in urban areas is usually quite high, we need
improved techniques to increase the reali sm and
thus facilit ate navigation through the model. The
most successful solution is the use of real images for
wrapping the geometry (see Gruber et al, 1997). If
real images are not available, an artificial texture
and materials or only color combinations have to be
used. This is to say that the information about
surfaces of objects (named geometric attributes later
in the text) has to be available in the database.
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• Information about behavior. The behavior of
objects, here, is limited only to the geometry
domain, i.e. how the object reacts during interaction
with the VRML world. For example, what will
happen if the user “cli ck” with the mouse on the a
building. One possible reaction is the begin of
rotation around the building. Many GIS and CAD
systems provide such dynamics without storage of
any special parameters in the database, but the range
of operations is rather limited. For example, a
“cli ck” on a building will cause always display of
some thematic information. VRML, however, offers
a technique to outline several behaviors per object.
The language defines behavior of objects by 1)set of
“sensors” , detecting user actions, time changes and
changes in the status of objects (e.g. successful
display of a HTML document), and 2) set of
parameters altering objects and scene description
(e.g. lights, viewing position). The mechanism
works on the basis of prior information “what action
activates what reaction” . Additional data are
required but in return quite complicated behaviors
can be designed.

 
• Fast traversal of the data base. In general, the

approach to access the database has some waiting
time for communication between the browsers at the
client station and the Web server at the server
station. Additional period of time is needed for the
documents created on the fly. The time for
transporting the document via Internet cannot be
influenced, therefore a fast traversal of the database
should be ensured, which refers the speed eff iciency
of the data structure.

 
• Ability to create LOD. The visualization using

several LOD is well known computer graphics
technique for navigation through large amounts of
data. The most detailed description of the object (i.e.
the most data for processing) is displayed on the
screen only when the object is very near to the
observer. Urban 3D textured models are quite large
and the use of LOD for real-time navigation through
VR worlds is almost compulsory. VRML supports
LOD, i.e. permits several different predefined
geometry descriptions to be included in the VRML
document, as each LOD is in a separate VRML
document. They are used by the VR browser as an
indication for switching between more detailed and
less detailed versions depending on the distance
from the observer to the object. The technique
requires, however, either the LOD to be stored in the
database or easy creation of LOD on the basis of
existing data to be ensured.

The requirements li sted above concern only the
visualization process with respect to the chosen approach
for visualization and interaction and extend the

traditional GIS requirements for maintenance of
topology and thematic information.

4. CONCEPTUAL SCHEMA

This paper is limited to data structuring in geometry
domain, therefore issues related to thematic domain will
be discussed only for completion of definitions and
expressions.

4.1 Spatial object

The fundament of the VRML concept, as well as, the
concept for interaction with VR worlds, is the object
oriented approach. However, what is an object? Which
parameters give a full description of an object? How can
we structure the information per object? Since these
basic questions should be answered prior the database
organization, a clarification of the components
contributing to the complete description of a spatial
object will be presented in the following chapter.

As a starting point for the spatial object definition we use
the Coad’s broad understanding (Norman, 1996) of an
object, i.e. “ the object can be anything: feature, action,
process, which is of interest for the user” . The  answers
to the questions “what the object knows about itself” ,
”who the object knows” and  “what the object does”
(named object responsibilities) and time-related
component named scenario aim to a complete
characterization of  the object. In other words, an object
O can be everything (feature, process, action, etc.) that
can be represented by two components OR (object
responsibiliti es) and S (scenario):

O (OR, S)

We will use terms attributes, relationships and behavior,
instead of the questions part of OR in the Coad’s
definition. Attributes (A) comprises all the information,
which can be collected answering to the question “what
the object knows about itself” , relationships (R) and
behavior (B) are related respectively to the question
“who the object knows” and “what the object does” . Thus
we can write that the object responsibiliti es OR have
three components:

OR (A,R,B)

A substitution of the OR components in the notations for
an object O we obtain the full set of components
describing an object, i.e. attributes, relationships,
behavior and scenario :

O(A,R,B,S)   

The term scenario stands for all the information, which
helps to follow, record and understand the evolution of
the object in long term period of time.



A spatial object easil y can be described by the four
components. For example, a building has:
attributes: hotel, made of bricks, somewhere in the
middle of the town (coordinates of the building are
available);
relationships: attached to the building of the theater, part
of chain of hotels;
behavior : possible walk trough the hotel and sightseeing
from the roof terrace, 10% of the profit go somewhere;
scenario:  building is reconstructed four times, last used
as a hospital.

It clearly can be seen that some of the descriptions refer
geometric domain (e.g. “made of bricks” ) and other are
pure thematic (e.g. “10% of the profit go somewhere” ).
Therefore, we will further elaborate on geometric (GD)
and thematic (TD) domain of a spatial object (see also
Molenaar, 1992):

O(GD, TD)

We distinguish attributes, relationships, behavior and
scenario of spatial objects in thematic and geometric
domain:

GD (GA, GR, GB, GS)
TD (TA, TR, TB, TS)

where GA, GR, GB, GS - geometric appearance,
geometric relationships, geometric behavior, geometric
scenario; TA, TR, TB, TS - thematic attributes,
thematic relationships, thematic behavior, thematic
scenario

The substitution in the notation for a spatial object will
give us the following:

O((GA, GR, GB, GS), (TA, TR, TB, TS))

Despite the thematic and geometric speciali zation in the
components, it is still possible to maintain different in
nature objects (people, buildings, documents, etc.). The
components are not compulsory. If the geometric
components does not exist the object can be maintained
only according to its thematic description. Similarly, not

all the components within one domain are obligatory.
For example, geometry domain may be represented only
by GA and GR or even only by GA. In general, the
information which is maintained in nowadays GIS’s
corresponds to the information containing in GA, GR
and TA components.

The establi shment of clear differentiation between
thematic and geometric information facilit ates the
process of information structuring and permits creation
of separate thematic and geometric hierarchies (see
Figure 2). In case of switching from one geometry
representation (e.g. boundary representation) to another
(e.g. voxel representation) only the necessary
components (e.g. GA and GR) have to be replaced.

Different associations between thematic and semantic
hierarchies permits a concept for a multi -resolution
description per object to be developed. For example, an
object named building can be represented by a “box” (i.e.
GA1) in GD and can have the properties of an
administrative building as TA in TD. Another
application, however, can require the same building with
the same TA to be represented as a point (i.e. GA2).

4.1.1 Geometric domain (GD)

The components in thematic domain (TD), will be not
studied further because 1) their high dependence on the
purposes of the information system and 2) a variety of
approaches and methods to structure thematic
information (Norman, 1996). Therefore, we will keep the
notations of an object, here,  as follows:

O((GA, GR, GB, GS), TD)

4.1.1.1 Geometric appearance (GA)

GA is notation for geometric appearance, not geometric
attributes. The use of other name is done due to the more
complex meaning of attributes in geometry domain.
Information about shape, position, size, color, texture,
etc. has to be structured in this component. This data are
related to the visual appearance of the object in 3D
space. Shape, size and position of the objects are
dependent on the manner of geometry description
chosen, (e.g. boundary representation, constructive solid
geometry) and the level of abstraction applied.
Variations can be quite significant. Color, texture,
material are determined by some physical properties (e.g.
material used for covering roofs) of real objects and are
not influenced by the geometry representation. The roof
of the building is red regardless the geometric
representation, i.e. a cone or a set of triangles. Therefore
we introduce two new components: geometric
description (GDsc) and geometric attributes (GAtt) as a
part of GA:

GA(GDsc,GAtt)

b o d y su r face l in e p o in t

fa ce

n o d e ro ofwa ll wi nd ow

bu ilding st re et squa re

ne ighb orho od

thematic domaingeometric domain

object geometric
descr iption

thematic
descr iption

Figure 2: Geometric and thematic description of
an object



=> O(((GDsc, GAtt), GR, GB, GS), TD)

Despite the three dimensions of every object, modeling
process still requires certain abstractions of real objects
to be build. The historical human experience with maps
and 3D CAD models has contributed to establi shment of
four abstraction types of objects, i.e. points, lines,
surfaces and solids. We will use the terms point, line,
surface and body and will give them the a common
notation geometric objects (GO). The next necessary
step is to distinguish between geometric objects and
constructive objects (CnsO). Geometric objects are
elementary nD objects (n = 0,1,2,3), which can be
associated with thematic meaning, while constructive
objects are used to compose geometric objects. For
example, a house can be build of many cubes with
different size and position in the space. The cube is a
CnsO and the construction of cubes is a GO. The
geometric description, in fact, is a function of
constructive elements:

GDsc(GO(CnsO))

Then the geometric appearance is represented by two
components geometric description and geometric
attributes, where the geometric description is expressed
by geometric objects (GO), which are function of
constructive objects (CnsO) .i.e.

GA(GO(CnsO),GAtt)

and the object notation is extended with the components
containing more detailed information about GDsc:

O(((GO(CnsO),GAtt), GR, GB, GS), TD)   

4.1.1.2 Geometric relationships (GR)

The second component cares about relationships, which
in geometry domain will refer to spatial relationships
such as containment (building inside parcel), touch
(connected buildings, adjacent parcels), etc. The
component is not compulsory for visualization process
but facilit ates spatial analysis. The way of representing
spatial relationships is again related to the method of
description. If the GDsc component does not provide all
the needed spatial relationships, some of them can be
explicitl y formulated. However, GR and GD are very
much dependent and will not be discussed in detail s.

4.1.1.3 Geometric behavior (GB)

The third component, denoted geometric behavior,
contains information about the permitted operations on
the object during navigation and editing. In the light of
the VRML concept, we distinguish the following types of
behavior:

• Operations on geometry (OG). The type refers
permitted operation on an object such as: 1)deleting
(OD) an existing object or some of its components,
2)updating (OU) some values of components of an
existing object and 3) adding (OA) a new object or a
new component of an object. Operations on
geometry can be presented as a set of three
components OG (OD, OU, OA). Further, we
specify which particular components are accessible
by the user for modification. For example, we can
forbid any changes in the components GDsc and
allow changes only in GAtt.

The control of the operations on objects can be
successfull y used to protect the information on the GIS
server. Since the tendency of our approach is to provide a
broad range of users with access to the information, a
strong security system against mistakes and
unscrupulous actions has to be developed. Protection of
data can be build up on two levels: server and database.
The server level controls and restricts the user rights to
modify the data in general. The database level  protects a
particular object from a particular action, e.g. a building
cannot be deleted by any user via Internet.
 
• Reactions of objects on events (GE). This type of

behavior aims to the establi shment of a strategy for
describing the user interactions with the object and
the possible reactions. In this context, we define two
components: initial event (EI) and a corresponding
reaction (ER) of an object. Initial event, i.e. the
action that can be detected by the system and
processes, which are supported by VRML are: 1)user
action i.e. cli ck with the mouse, drag and drop with
the mouse, pass over object with the mouse;
2)absolute and relative time (i.e. some event can be
initiated at a predefined in VRML document
moment, counted by an internal clock) and 3)events,
caused by other applications (e.g. a display of a
document, successful connection to the server,
which are detectable by a special field values in the
syntax of VRML. The reaction can be either
executing of a an existing on the GIS server HTML
or VRML document, or running a script file (CGI,
Java, etc.), or starting a predefined action
(animation, rotation, shifting of object), which can
be included the current VRML document. Last case
requires the ER component to be refined for the
parameters necessary to describe the action. For
example, if we want to define: “after two cli cks with
the mouse start an animation showing rotating
building. Some parameters, e.g. center of rotation
can be computed from the data in the GDsc
component, but other, e.g. speed of rotation might be
stored. The GE component is represented as
GE(EI,ER)

 



• Reactions on interactions with other objects (GI).
This type of behavior is devoted to interaction
between object inside the model. For example, if we
have an object car and we start movement with the
car trough the town, we can specify what will
happen if the car touches one or another building.
Note, we can specify different reaction: the car could
crash or pass trough the object of interaction. To
make possible this kind of behavior, we define three
components: initiator, i.e. the object caused the
interaction (IO), initial event (IE) and reaction
(IR). Then the short notation for this type of
behavior can be written as GI(IO,IE,IR).

 
• Degree of immersion (GM). Last possible behavior

is with respect to specification of a detailed
investigation of an object, e.g. entering a building.
The information is quite relevant for composite
objects. For example, suppose a building is a
aggregation of rooms, walls, stairs, etc. The
information about the interior of the building is not
necessary for a simple “walk trough the town” ,
therefore a VRML document only with the walls of
the building can be created. If the user wants to
enter the building, a new VRML document should
be created and submit  to the client station. A
possible way to  display the interior of buildings is
the usage panoramic images and appropriate
viewers. Useful information ordering the files with
panoramic images can be organized in the  GM
component.

Finall y, the complete set with all the components
describing and structuring behavior of objects s:

GB(OG, GE, GI, GM)
=>GB((OD, OU, OA), (EI, ER), (IO, IE, IR), GM)

In fact, the classification of behavior, li sted above, can
be reali zed in the VRML document applying different
mechanisms, which can lead to combination of some
parameters on implementation level.

The last component of the GD, i.e. geometric scenario
GS pursues  maintenance of information about changes
in long periods of time. For example, appropriate data
can give an idea what are the changes in the shape of the
building for a period of ten years, or what are changes in
the vegetation in a town in five years, or even what is the
pollution propagation in an hour.  However, the GS is
far beyond the scope of the paper and will not be
discussed in detail s.

At the end, the notation for an object including the
elaboration in geometric domain (GD) is presented as
follows:

O(((GO(CnsO),GAtt), GR, ((OD, OU, OA), (EI, ER),
(IO, IE, IR), GM), GS), TD)

4.1.2 Composite objects

The definition and structuring of composite objects
always have been related to a number of diff iculties, e.g.
the composite object does not have the properties of the
creating objects, the decomposition into composing
pieces sometimes is not possible,  need of well defined
system for inheritance of parameters. Despite the
problems, the composite objects are necessary for:
• dynamic modeling, e.g. to move composites

relatively to one other
• increasing storage economy by references to already

known objects
• easy update propagation, i.e. modification of a

“parent” object will be propagated to “children”
object

Two basic techniques have been applied in computer
graphics for creating composites of 3D cell s (solids):
spatial set operations (union, intersection and difference)
and joining pieces along their boundaries. The first
technique is more suitable for 3D objects represented as
solids, while the second is more often used for surface
representations. An advantage of the first method is easy
way of decomposition and disadvantage impossibilit y to
model separate faces. Second method usually does not
support back partition into composing object. A variety
of mixed structures are implemented in order to benefit
from some advantages and avoid drawbacks. The
complexity of the problem increases when a spatial
object is considered due to the thematic and geometric
component.

VRML allows grouping of objects as the principles are
aggregation (geometry, appearance and behavior of
objects), inheritance (transformations) and
encapsulation.

A composite object (CO) will be defined here as a set of
objects (Oi) and composing rules (Rui) for composition
and can have its own components in geometric domain
(GD), thematic domain (TD), i.e.
CO(Oi, Rui, TD, GD)

The composing rules are per object and refer each
component of the object, i.e. attributes, relationships,
behavior and scenario:

Ru(RuA, RuR, RuB, RuS)
where, RuA is rules for composing attributes, RuR -
rules for composing relationships, RuB - rules for
composing behavior and RuS - rules for composing
scenario.



Clearly, the composition rules are different for geometric
and thematic domain. For example, a composite building
can be organized as aggregation of several small
buildings in geometric domain, while classification
principal can be applied in thematic domain. Therefore
the Ru components per object  has the notation:

Ru(RuGD, RuTD)

where RuGD and RuTD are rules for composition in
geometric and thematic domain.

=>Ru((RuGA, RuGR, RuGB, RuGS), (RuTA, RuTR,
RuTB, RuTS))

We can write the notation about composite object as:

CO(Oi, Rui,, GD, TD) => CO(Oi, (RuGDi, RuTDi),
GD, TD) =>CO (Oi, ((RuGAi, RuGRi, RuGBi,
RuGSi),
(RuTAi, RuTRi, RuTBi, RuTSi)), GD, TD)

Some simpli fication of the notation can be achieved if a
the rules for composition are unified and the same rules
are applied for all the components in a certain domain.
For example, the RuGR component from geometric
domain (GD) can be dropped off the notations because
the in most of the cases the spatial relationships are
related to the GDsc, defined on an object level.

4.1.3 Spatial indexing: 3D R-tree

Presented structuring of the information per object in the
previous sections clarifies the data needed to create the
VRML document and facilit ates their organization.
Recall from chapter 3 reveals that fast access of database
and organization of LOD are still not ensured. One way
to achieve fast traversal of the database and respectively
short time for creation of VRML documents on the fly, is
a smart organization of data in GDsc component, i.e.
utili zation of structures implemented in VRGIS for real-
time navigation. Most of them, however, aim speeding
up of the visualization process rather than performance
of spatial analysis. Therefore, we prefer a geometric
representation maintaining topology, which will
facilit ate spatial analysis and apply additional techniques
to reduce the traversal time (see Figure 3). Such a
technique is the implementation of an indexing schema.
We concentrate on spatial indexing schemas (e.g. Quad
tree, R-tree)  due to aimed abilit y to complete spatial and
network analysis (e.g. “show the way to the center of the
town” ), not only retrieval of data (e.g. thematic
attributes) about given object, which can be reali zed by
linear indexing. Some properties of R-trees, e.g. arbitrary
sell boundaries, multi -dimensional search space, make
them some of the best structures for spatial searching.
The R-tree intended for spatial indexing is a slight

modification of the classical R-tree presented in
(Guttman, 1984).

The major properties of the classical R-tree can be
summarized as follows: the R-tree is a collection of
tuples as each tuple has unique identifier; leaves contain
a tuple of the form (MBR, Oi),  where MBR is the
minimum bounding rectangle of an object Oi. Non-
leaves are presented by another tuple (MBR, Ri), where
MBR is minimal covering rectangular in the lower
entries. The R-tree is a balanced tree with maximum
height logm N -1, where N is the number of the objects
for indexing. Reported implementations show that the
optimal number of entries i per node is between 3 and 4.

The R-tree organization of objects aims not only
speeding up the operations with the database but
supplying data for organization of LOD on the fly.
Therefore, we modify the bounding rectangles to
bounding 3D boxes. The properties of the classical R-tree
are preserved as MBR is renamed to minimum bounding
box (MBB) (see Figure 3).

The VRML documents with the LOD has to be created
separately from the basic file with the full -detail data but
simultaneously within the time for data query. The
back/forward switch operation between VRML
documents with different LOD is handled automaticall y
by the browser during the navigation through the model.
In general, two approaches to maintain LOD can be
followed: preceded creation and storage of LOD in the
data base (Schickler, 1997) or dynamic creation on the
basic of existing data. First approach gives the freedom
to design LOD, i.e. to  select which components of GDsc
will be used for a particular LOD. In fact, the LOD are
different geometric descriptions per object. Second
approach leads to more coarse LOD but needs less data
for storage.

Topological data structure

2. objects: thematic, deometric description

3. geometric objects: body, surface, line, point

4. geometric primitives:  face , node

1. composite objects

0. MBB of the root non-leave (entire model)

h-1. MBB of the first non-leave

...

h. MBB of an object/composite object

1. MBB of a non-leave

R-tree structure:

Figure 3: 3D R-tree indexing



In our approach for visualization, we use the leaves of
the R-tree, i.e. the component MBB to create LOD on
the fly as follows:
LOD0: the MBB of the root of the R-tree, i.e. one box
LOD1: the MBB of the first non-leaf level
LOD2: all the MBB of leaves: bounding boxes per object
LOD3: full geometry resolution without photo texture.
LOD4: full geometry resolution with photo texture

5. IMPLEMENTATION ISSUES

The data structure presented here is not complete
implementation of all the components of the object
defined above. We concentrate mainly on GA, GR and
GB, assuming that they represent the most important
information to create VRML documents and have crucial
impact on the successful communication between client
and server (see Figure 4).

Chapter 4 was devoted on a schema for structuring of
information per object, however, the manner of
geometric description of the objects was not discussed.
We will As it was stated above, GDsc is influenced by a
number of factors: the purpose of the application (e.g.
environmental analysis or town planning), the method
for data collection, the rendering engine used for
visualization, etc. Boundary representations (B-reps)
seem to be the best suited description for urban modeling
due to 1)the prevalent attention to the surfaces of the
objects, and 2) mostly surface measurements to build
geometry. On another hand most of the rendering
engines (VR browsers in our approach) are based on B-
reps. Some recent developments in 3D reconstruction of
man-made objects draws the attention up to the
constructive solid geometry (CSG) structures, which in
practice is reali zable  in VRML. We consider, however,
the storage of real measurements a crucial  requirement
for our data structure. Since it is more diff icult to be
realized in CSG structures, we concentrate on B-reps
description without dipper elaboration.

The CnsO in B-reps are points, lines (arcs) and faces,
which are used in different  combinations in CAD and
GIS structures (Baer et al, 1979). The model presented
here is based on existence of two of these CnsO, i.e.
points named nodes and faces. This is to say that a
surface and body object will be described as a set of
faces, while line object will be a set of nodes and point
object will be the node containing the coordinates (see
Figure 2 and  5).

The most significant spatial relationships for the VRML
document among geometric objects and their composing
objects, are the relationships object-face and  face-node.
The query for creation of VRML documents starts always
from the object level and ends at the lowest constructive
object level, i.e. nodes. This requires an object-face-
node traverse of the data base, which is assured by
storage of boundary relationships, e.g. face is a li st of
nodes, body is a li st of faces.

In order to simpli fy the composing rules to create
composite objects, we establi sh the following rules for
composition of objects  in geometry domain:
geometric objects (GO(CnsO)): The major principle is
aggregation, i.e. the composite object is a child,
containing all the primiti ves of parent objects.
geometric attributes (GA): The rules are aggregation
and inheritance. If the composite object has its own
geometric attributes they are dominant, e.g. a surface,
presented as a composite object of a street, canal and
parcel, can have a geometric attribute texture covering
the three parent objects.
behavior (GB):  Maintenance of behavior of composite
objects is similar to the geometric attributes. In general,
two distinct cases are possible: 1)the child have an
individual behavior, which is dominant for the composite
object and 2)the child does not have behavior, i.e. the
parent behavior can be activated individually.

Bearing in mind the assumptions about composing rules
, the composite object  can be expressed as a li st of
composing objects.

P OIN TLINEB OD Y

N OD EFA C E
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P O IN T_ A

P O IN T_ B

GD s c
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L IN E_ D
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B O D Y_ D
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S UR F _ B

S U RF
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GB :

GA tt:
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Figure 4: Implemented components: GDsc, GAtt, GB
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Figure 5: Relational data structure



The data are organized in a relational data model as each
component (GDsc, GAtt, GB) is represented by one
relational table (e.g. SURF_D, SURF_A, SURF_B) (see
Figure 4 and 5). Thus each GO (body, surface, line,
point and composite object) has three relational tales. An
example of the information stored in the relational tables
can be seen bellow:

SURF_D
sid enoseq fid
1 1 -2
1 2 +1
1 3 +3

sid - surface identifier; enoseq - sequences of faces in a surfaces; fid -
face identifier where the sign +/- is indication for the orientation of
the face;

SURF_A
sid rtree color tid
1 245 234 2
2 238 123 2
3 156 234 3

sid - surface identifier; rtree- the path in the r-tree; color - RGB
color of the surface; tid - texture identifier for wrapping or mapping
one texture on a surface;

SURF_B
sid EI ER
1 onckl “pp.wrl”
1 onpas “ch.java”
2 onckl “ rp.wrl”

sid - surface identifier; EI - event initiator; ER - event response.

The R-tree leaves and non-leaves are organized in
relational tables containing information about MBB
(minX, minY, minZ, maxX, maxY and maxZ
coordinates of a R-tree box ) and the identifiers of the
three children leaves (non-leaves). The number of

entries, i.e. three, was chosen among experimented 2,3,4
and 5 entries per non-leave. The aim was to achieve such
groups of objects in the height h-1,i.e. the first non-leave
level which can be used to create one LOD. This means
that the MBB has to give an idea about the shape of the
three grouped objects. As an experimented criterion for
grouping was used: the minimal oblique distance, the
minimal horizontal distance, and the min-max angle,
between weight centers of the objects. The best results
were achieved with criterion min distance and min-max
angle between mass centers of the objects. An additional
column with the position in the r-tree was included in
the attribute tables of each GO and CO and CnsO in
order to facilit ate the traversal of the FACE and NODE
tables. Note, the FACE and NODE  table contain all the
faces and nodes in one 3D model.

The method for creating LOD for visualization is
expected to perform satisfactory results for buildings (see
Figure 6), however, large surface objects will cause
visualization artifacts. Suppose the DTM is one object,
its bounding box will cover the entire model and in case
of rough relief will hide large parts of the model.
Apparently either these LOD should not be applied to
such surfaces, or the surfaces should be subdivided
further into smaller parts.

6. SUMMARY AND FURTHER RESEARCH

We presented one possible solution for a 3D GIS on the
Web using HTML and VRML documents for
visualization, navigation, query and modification of data.
Specific for the system architecture database
requirements were clarified and systematized, and a
concept for structuring the information per object was
introduced. The data structure maintains information
describing behavior of objects allowing variety of even-
driven operation to be formulated. From the user point of
view this means abilit y to query objects in the VRML
world for diverse information (text, movie, image,
VRML), modify objects and their components.

The data structure derived is mapped on a relational data
model. The implementation components of the system
are: APACHE server as a Web server, Netscape as a
HTML browser, COSMO Player as a VRML browser,
MySQL as a DBMS. The programming languages are
Perl and C++ for creating CGI scripts and Javascript for
manipulations of the model at the client station. The full
functionalit y of the system is not reached yet. The query-
response process is limited to sending back to the client
station HTML and VRML documents existing on the
server. The next step is the creation of documents on the
fly after completed query from the database.

Figure 6: LOD: full resolution, geometry without
texture, MBB of a non-leave of the R-tree.
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