
A Semantic Data Model for Indoor Navigation  
Liu Liu 

GIS Technology, OTB Research Institute for the Built 
Environment, Delft University of Technology 

Jaffalaan 9, 2628 BX Delft  
The Netherlands 

L.liu-1@tudelft.nl 

Sisi Zlatanova 
GIS Technology, OTB Research Institute for the Built 

Environment, Delft University of Technology 
Jaffalaan 9, 2628 BX Delft 

The Netherlands 
S.Zlatanova@tudelft.nl 

ABSTRACT 
In this paper, we propose an indoor data model named Indoor 
Navigation Space Model (INSM). It is designed to support 
automatic derivation of the connectivity graph of a building. The 
INSM model provides an extended categorization of indoor 
spaces based on building semantics. It can be used to specify the 
nodes and edges of the connectivity graph. A UML class diagram 
of the INSM and a general approach of external data conversion 
are provided as well. An initial test of indoor path-finding is 
conducted and it demonstrates the feasibility of the INSM model 
to support indoor routing.   

Categories and Subject Descriptors 
H.2.1 [Logical Design]: Data models; 

H.2.8 [Database Applications]: Spatial databases and GIS 

General Terms 
Algorithms, Design 

Keywords 
Indoor Navigation, Building Semantics, Indoor Navigation Space 
Model, Path-finding. 

1. INTRODUCTION 
Indoor navigation is a task which consists of indoor localization, 
route planning and homing users on the designed routes. All the 
three stages need an appropriate representation of the indoor 
environments. Thus some sort of building model has to be 
constructed to facilitate indoor navigation. Generally, 3D 
topographic space is a fundamental aspect for indoor navigation. 
More specifically, the subspaces obtained from the whole building 
space with given semantics are significant to route planning. 

The CityGML model and the Industry Foundation Classes (IFC) 
provide the topographic space of the indoor environment. They 
present geometric and topological relationships and certain 
semantics of the indoor environment. So they can potentially 
provide a part of or all of the necessary information for indoor 
navigation. Nevertheless, they are not specific models for indoor 
navigation. Some important information may not be explicitly and 

automatically obtained from them, such as the connectivity 
between staircases and other spaces. Yet this information is 
essential to indoor route planning, especially for graph-based 
approaches.  

Furthermore, usually indoor obstacles can disturb the navigation 
process. However, state of the art researches and implementations 
of the indoor navigation (or the indoor path-finding) don’t stress 
out the obstacle issue except for some simple emergency scenarios 
[9, 16]. For instance, in the CityGML building model a class 
named IntBuildingInstallation represents “an object inside a 
building with a specialized function or semantic meaning” [6]. 
Thus it can be regarded as a potential fixed obstacle, which means 
it can’t be moved when pedestrians attempt to get through the 
space which it occupies. Another class BuildingFurniture can be 
considered as the potential moveable obstacles, such as chairs 
which can be budged. Nonetheless, there is no class to denote 
obstacles generated by hazards during emergencies.  

Recently several navigation models have been investigated and 
reported in literature. The semantic model proposed in [14] 
mostly focuses on the Granting property of openings. It is not 
good enough for path derivation as it lacks the connectivity 
information between indoor spaces. The Combinatorial Data 
Model (CDM) is proposed in [10] to represent adjacency, 
connectivity and hierarchical relationships of building entities. It's 
a logical model and its representation is a pure graph without 
geometric properties. In order to apply network-based analyses 
(e.g. path-finding) on this model, the geometrical metric is 
introduced by means of Medial Axis Transformation (MAT) [1]. 
Finally, a geometric network is used to represent the building and 
support analyses. Another semantic model provided in [17] is also 
based on the geometric network of a building. But obstacles are 
not taken into account in the model. Recently a new semantic 
modelling method is reported in [18]. Yet it only aims at 2D 
geometries of buildings and the building semantics is quite simple. 
A "structured floor plan" is presented in [3]. It aims at supporting 
spatial design by getting semantic building spaces from the 
building geometry. It is also not a specific navigation model. For 
instance, the “beam” class is unnecessary to be used for path-
finding. 

The Indicative Route Method (IRM) is proposed in [8] on the 
basis of the "corridor map"[5]. The notion of "corridor" delineates 
the space that people can move freely among obstructions. The 
method inherently supports obstacle avoidance. Meanwhile, 
skeletons (the medial axes) or curves with certain clearance to the 
obstacles are smoothed. However, it is only a path-finding method 
and it doesn't involve the management of obstacles. If the free 
spaces are known to users, it implies the test scenario also has 
been known. So before applying this method to different kinds of 
scenarios, a model for scenarios is required. 
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The approach in [7] aims to construct the geometric-topological 
consistent indoor environment by making use of a grammar. 
Meanwhile, semantic information can be obtained as well. 
Though it’s a promising way, much more rules have to be added 
in to reconstruct complex buildings. 

A clear and very interesting model is proposed in [2]. Although 
the conceptual model grasps all key elements of buildings such as 
IndoorObstacleSpace, TransitionSpace and IndoorSpace, it’s still 
a bit rough and it does not elaborate on the relations between the 
three key classes. Also, the means by which these elements group 
into the elements of higher level (e.g. storey and 
IndoorEnvironment) is vague.  

The Multilayered Space-Event Model (MLSEM) [15] has been 
developed recently. It provides a fundamental framework for 
indoor navigation and allows links to be established between 
different layers such as building geometry, coverage of sensors etc. 
The research in this paper follows the general concepts of the 
MLSEM. 

Based on the review given above, disadvantages of current 
navigation models can be summarized as follows: 

 Limited link between indoor space subdivision strategies 
and path-finding approaches.   

 Incomplete concerns about semantics of building spaces. 

 Limited consideration of indoor navigation with obstacles. 
The routing algorithms mostly consider empty spaces. Yet 
in emergencies, obstacles are significant as they may change 
a path and impact the safety of pedestrian’s movement.   

 Little consideration of dynamically changing scenarios such 
as the emergency scenario.  

In this paper, we propose a spatial-semantic coherent data model. 
It aims to address the above mentioned deficiencies. The model is 
specifically designed to support different environments/scenarios 
for specific indoor navigation tasks. It allows the connectivity to 
be automatically derived from the semantic hierarchy. Moreover, 
when applying classification/semantics of the model to indoor 
path-finding, we concentrate upon some “useful” building spaces 
and their characteristics.  

The paper is developed as follows. In section 2, we will present 
our model and provide the definitions of indoor spaces. Section 3 
will elaborate a general method to convert external data to the 
data in our model. Section 4 would address how our model is 
applied to indoor path-finding. Afterwards, section 5 will 
exemplify an initial test to demonstrate the feasibility of our 
approach. Ultimately, section 6 will conclude this paper with 
some future work. 

2. Indoor Navigation Space Model  
Generally, the purpose of space subdivision for indoor navigation 
is to automate the derivation of graphs of certain type [11, 14, 15]. 
But most of these graphs belong to the Geometric Network, i.e. 
metric information (e.g. coordinates) is assigned to each node of 
the graphs. Since the primary path-finding method is based on a 
graph representing building interior [4, 13], geometric routes can 
be calculated according to some rules and algorithms (e.g. the 
shortest way or the fastest way).  
In this paper we consider the so called Logical Graph which 
doesn’t involve metrics. Moreover, for indoor navigation we 

consider the two-level routing strategy which is presented in the 
previous publication [12]. The first level (i.e. the rough level) is 
based on an appropriate subdivision of a building. The Logical 
Graph (i.e. connectivity graph) is obtained on this level. On the 
basis of the Logical Graph the sequence of spaces to be followed 
is defined. At the second level the Door-to-door algorithm is 
applied. It utilizes metrics and considers obstacles to get a 
detailed path. Visibility graph (VG) is the foundation of the 
algorithm. A VG is constructed with the geometry of the current 
space and those of the obstacles contained in the space. Nodes of 
the VG involve the geometric vertices of obstacles and the 
concave vertices of the space; while edges represent the visibility 
between those nodes. After some shortest algorithm is applied to 
the VG, we can gain a shortest-distance and obstacle-avoided path. 
Yet in this paper, we further concentrate on the model of space 
subdivision. It’s devised to bridge common-used standard datasets 
(IFC, CityGML and floor plans etc.) and indoor navigation.  

2.1 Design Consideration 
When we design a space model it is important to clarify the 
navigation spaces and their semantics. Also, the connectivity 
between these spaces should be readily identified. The principle is 
to effectively characterize indoor navigable spaces and keep the 
number of space types as less as possible. Thus we need to rethink 
about indoor spaces.  

During the development of a novel model for buildings, we offer 
explicit indications of spaces. For a space these indications 
include its navigation usage, its connections to other spaces (i.e. 
multiplicity of connections), the possibilities to change floors and 
the free area within it. According to the usage of spaces, some 
spaces may be filtered and only the “useful” spaces will be 
collected for navigation. In the horizontal movement of users, 
certain transition spaces (e.g. openings) would be helpful as they 
connect different parts and control the accessibility of a building. 
In order to consider the vertical movement such like changing 
floors, we would like to extract some specific spaces to stairs and 
other vertical movement facilities (i.e. elevators).  

For a space (a room or a corridor), it is important to know how 
many obstacles are in it. This can be an indication of the available 
free part for navigation. Furthermore, openings in a single space 
imply its connections with other spaces. The multiplicity of the 
connections may change the direction of movement.  

According to various data of the indoor environment, for path 
computation we require a model which can identify a set of spaces 
and a set of relationships among the spaces from building 
semantics. The spaces are regarded as nodes and the relationships 
are considered edges. Then the graph derivation could be 
achieved automatically yet metrics (i.e. geometric information) are 
not introduced. The space sequence can be computed on this 
graph by applying non-metrics rules.  

In the following section we will introduce the data model named 
Indoor Navigation Space Model (INSM). All the involved spaces 
(different building elements) are given with their formal 
definitions and relations. In addition, a UML class diagram of the 
model and a general external-data-conversion method will be 
discussed in detail. 
 
2.2 Building Space Definitions 
We use the notations of set theory to introduce our definitions. 
The introduced spaces and their relationships are also going to be 
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modelled with UML. We use capital letters to denote all sets and 
we take corresponding small letters to denote the set elements.  

At first, we present three general indoor spaces. They are Obstacle, 
Opening and Navigable Space cell. Their definitions are given as 
follows. 

1) Obstacle (OBS) is a space which cannot be entered by 
pedestrians. 

2) Opening (OPN) is a transition space for the movement from 
one space to another space. 

3) Navigable Space cell (NSC) is a space in which people can 
move freely without passing any opn. 

 
 

As shown in Figure 1, a nsc could contain one or more obs; and a 
nsc can contain one or more other nsc as well. A opn can only 
connect two nsc. 

Some other basic building spaces are defined as follows: 

4) Vertical Unit (VU) is a nsc in which people can move in 
vertical directions (up and down) along the same slope.  

5) Horizontal Unit (HU) is a nsc in which people can move freely 
in horizontal directions. 

6) End is a hu which is only connected to one another nsc at most.  

Above five types (OPN, OBS, NSC, VU, HU) are the basic spaces 
in a building. Several other spaces will be defined with the help of 
them.  

Here we introduce a useful auxiliary space type -- Connector. 
According to [14], the Connector represents corridors, elevators 
and stairs. A Connector has more than one entrance/exit [14]. In 
this paper we change its definition as an End also could have 
more than one entrance/exit. We define the Connector based on 
the number of its linked neighboring spaces. If a nsc is connected 
to at least two spaces , , ,k tnsc nsc NSC k t∈ ≠ then the nsc is a 
Connector (CON).  

A nsc’s absolute bottom height is denoted by botmh, and its 
absolute top height is represented by toph. They are named the 
nsc’s heights (botmh, toph) for short.  

For a group of nsc, the maximum value of their toph is MaxH and 
the minimum value of their botmh is MinH. (MinH, MaxH) is a set 
of Absolute Height Thresholds (AHTs).  

, , ,k tnsc nsc NSC k t∀ ∈ ≠ ,r R∃ ∈  0 < r <|tophk - botmhk| ∧  r < 
|topht - botmht|, if |botmhk - botmht| < r ∧  |tophk - topht| < r, then 
r is the Relative Height Threshold (RHT). In practice, the RHT is 
a given tolerance (e.g. 0.3 m).  

Vertical Connector (VC) is a hu which connects at least two 
different nsc, meanwhile at least one of these nsc is a vu. That is, 
VC := {vc ∈VC | ∀  vc, ∃  connected nsck, nsct ∈  NSC, :k t≠  vc 
∈HU ∧ nsck∈VU ∨ nsct ∈VU}. We name it VC as it’s a con 
and it connects at least one vu. 

Horizontal Space Floor (HSF) is a group of hu. HSF := {hsf ∈  
HSF | ∀ hsf  : hsf ∈  HU ∧ MinH < botmh <MaxH ∧ MinH < 
toph <MaxH}. 

Contained Vertical Unit (CVU) is a group of vu contained in 
certain hsf. CVU := {cvu∈CVU | ∀  cvu, ∃  hsf∈HSF : cvu∈VU 
∧ cvu is in hsf}. 

Dangling Horizontal Unit (DHU) is a group of hu which connects 
HSF to some vc but doesn’t belong to HSF. DHU := {dhu∈DHU 
| ∀  dhu, ∃  connected nsck, nsct ∈  NSC, :k t≠  dhu∈HU ∧ dhu 
∉HSF ∧ nsck∈VC ∧ nsct ∈HSF}. 

Horizontal Space Vertical Connector (HSVC) := {hsvc∈HSVC  | 
∀  hsvc, ∃  connected nsc∈NSC : hsvc∈VC ∧ nsc∈  
HSFDHU}. 

Horizontal Space (HS, storey) := {hs ∈ HS ｜ ∀  hst ∈ hs : 
hst∈HSF  CVU  DHU  HSVC}. HS is devised to represent 
the notion of “storey/floor” in reality. Originally it is the gathering 
of hu at certain height level. But in order to model the complex 
“storey” which contains intermediate-levels and some unequal-
height spaces, we have adopted the above definition. Generally, a 
hs is the gathering of a group of nsc. The height level of a hs is 
controlled by a set of AHTs (MinH, MaxH). 

Horizontal Connector (HC) is a hu which connects at least two 
other different hu, meanwhile all of them belong to a same storey. 
HC := {hc ∈ HC | ∀ hc, ∃  connected huk, hut ∈ HU, :k t≠  
hc∈HU ∧ hc, huk and hut  are in one hs}. 

Vertical Connector in Vertical Space (VCVS) is a hu which only 
connects two different vu. Thus a vcvs is also a vc. VCVS := 
{vcvs ∈ VCVS | ∀ vcvs, ∃  only connected nsck, nsct ∈ NSC, 

:k t≠  vcvs∈HU ∧ nsck ∈VU ∧ nsct ∈VU}.  

Vertical Space (VS) generally is the aggregation of a group of vu 
and vcvs. VS := {vs∈VS | ∀vsi∈ vs: vsi∈VU VCVS}. 

Building Space (BS) is the gathering of multiple vs and hs without 
OBS. BS := {bs∈BS | ∀bsi ∈bs: bsi∈VSHS}. 

Building Part (BP) is the aggregation of multiple bs, opn and obs. 
BP := {bp∈BP | ∀bpi ∈bp: bpi∈BS OPN OBS}.   

Building (B) is the aggregation of multiple bp. B :={b∈B| ∀b : 
b⊆ BP}. 

From above definitions, several conclusions could be gained as 
follows. A vu connects at least two vc; a vc connects at least one 
vu; a hc connects at least two hu; and a vcvs connects only two vu.  

Figure 2 illustrates some key building spaces of the INSM. They 
are VC, VU, HC, HS and End. In Figure 2, there is a vu contained 

Figure 1.  Illustration of general space notions 
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in a hu. Thus it’s a cvu. And several hu on the ground constitute a 
hsf. On the left side of Figure 2, the top height of a connected vc 
exceeds those of the hu. According to the definition of HS, the vc, 
those hu and the cvu compose a hs (storey). In this case, it 
demonstrates the capacity to describe and construct complex 
indoor environments (e.g. intermediate-levels in a storey and 
indoor spaces with distinct heights). Though a few models has 
already been proposed for indoor navigation [10, 14, 17, 18, 19], 
we believe the INSM is more capable of expressing most 
buildings without extra subdivision.  

 
 

The next section will present a UML class diagram of key 
building spaces which are defined in this section. Yet some 
supportive spaces such as CON, HSF, CVU, DHU and HSVC are 
not critical for navigation tasks. Thus they are not selected into 
the UML diagram.   

2.3 UML Class Diagram 
We name the data model as Indoor Navigation Space Model 
(INSM). The INSM model contains the basic spaces OPN, OBS, 
NSC, VU, HU, the specializations End, VC, VCVS, HC, and the 
aggregations HS, VS, BS, BP, B.  

A fundamental class is NSC. It denotes all navigable units of a 
building. Thus it’s the generalization of several other space 
classes. HU and VU are two basic subclasses of NSC. HC is the 
main horizontal passage between any two hu in a hs (storey). VC 
connects hu / vu to vu, and vice versa. VC has a subclass VCVS. 
VU is the generalization of Staircase, Escalator, Elevator, Ramp 
and VerticalTransferCells (e.g. a spacious nsc spanning two hs). 
End is a kind of HU. In general, HC, VC and VU are like vessels 
in a building. So path computation will stick to these main 
passages.  

There are several other important classes in the diagram such like 
OPN and OBS. Except for Door and Window, a subclass of OPN 
named TemporaryOpening is designed to represent emergency 
exits. Also, the classes called FacadeWindow and InteriorWindow, 
the subclasses of Window, are distinguished according to their 
usages. For example, an instance of FacadeWindow at low-level 
hs(storey) can be used for evacuation when a scaling ladder is set 
to it. 

The subclasses named FixedObstacle and MoveableObstacle are 
designed for the class OBS. Their instances (e.g. pillars and desks) 
can be found in normal situation. Yet another subclass called 
DynamicObstacle is devised to express some obstructions 
occurring along with building changes such as hazards or 
collapsing parts. 

Furthermore, the class VS is aggregated by the classes VU and 
VCVS. Another aggregation class HS is contributed by HU and 
VU. VS and HS further aggregate to the class BS. Then BS, OPN 
and OBS are gathered to form the class BP. Finally, the class B is 
aggregated by BP.  

Next we would elaborate the attributes of distinct classes in the 
UML diagram. The class NSC includes attributes as TopHeight 
and BottomHeight referring to a nsc’s heights. It also has other 
pivotal attributes which are called OpeningIDs, 
ContainedObstacleIDs, HazardPresence, ObstacleDensity and 
Crowdness. The attribute OpeningIDs indicates which opn are 
related to a nsc. It will be used to support connectivity graph 
derivation of a building. The attributes ObstacleDensity and 
Crowdness denote the degree of obstruction and congestion in a 
nsc. They are used to compute the weights of edges on a graph for 
path-finding. Moreover, the attribute ContainedObstacleIDs is 
designed to imply which obstacles are contained in a nsc. The 
attribute HazardPresence indicates the current state of a nsc.  
Both the classes VU and VS provide the attributes named 
LinkTopStoreyID and LinkBottomStoreyID to show their relations 
with different hs. In the class HS, the attributes MaxHeight and 
MinHeight represent the AHTs of related hs (storey). The 
information that a hu is contained in certain hs also should be 
stored. Thus the class HU is designed an attribute named StoreyID. 
As an end is connected to one nsc at most, so there is an attribute 
of the class End named NeighborID which indicates the 
connected nsc.  

For the class OPN, the attribute Existence denotes whether a opn 
is existed; the attributes called LeftSpaceID and RightSpaceID 
provide the IDs of two connected nsc; PassingDirections reflects 
whether a opn is passable from a nsc to another one; The attribute 
called IsExit indicates whether a opn is a main entrance/exit of a 
building; Another attribute CurrentState reveals that a opn is 
opened or close. At last, in the class OBS, one of its attributes 
named BelongedSpaceID implies which nsc contains the obs.  

So far we have presented the UML class diagram of building 
spaces according to the definitions in section 2.2. From 
conceptual viewpoint the UML diagram is in line with those 
definitions. But the UML diagram provides the better view on 
classes and relationships. Moreover, according to the UML 
diagram the INSM model can be directly prepared for 
implementation.  

It’s not enough to merely use the INSM for indoor navigation as 
available indoor data may be acquired from some other data 
model. Thus it’s necessary to consider data conversion from other 
sources to the INSM. With the classes and their attributes of the 
INSM, the data conversion can be completed. In the next section, 
we will introduce the process. 

3. Data Conversion to INSM 
Sometimes there may be no obvious sign of certain space type in 
the INSM. For instance, a vu in Figure 2 is a staircase connected 
to a vc. There is a connection but no a genuine door between them. 
This gives us a hint that in reality we are not always lucky to have 
a complete dataset which totally conforms to the INSM model. So 
it requires an efficient and accurate way to convert the data from 
some other sources (e.g. CityGML or IFC models) and to import 
them to our INSM model. 

Figure 2. Building spaces as defined in INSM  
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In the following subsections, at first we introduce several specific 
operators of class NSC. Then we explain how these operators and 
semantics of the INSM are used to transform the data of external 
sources.  

3.1 Operators 
An operator named PassRight() of a nsc is defined to check the 
passing right of a opn of the nsc. Its input parameter is a opn. The 
return values are {in, out, bi-direction, none}. “in/out” means it’s 
able to be in/out of a nsc, and “bi-direction” indicates one could 
get both in and out of a nsc. At last, “none’ indicates a nsc can not 
be accessed by this opn.  

As a opn connects two nsc, an operator of a nsc named 
LinkedSpace() is used to acquire the other nsc linked by the opn. 
Its input parameter is a opn and the return value is the connected 
nsc. That is, opn connects nsck, nsct ∈  NSC, ,k t≠  
nsck .LinkedSpace(opn) = nsct. 

Another operator named Belonged() of a nsc is used to check 
whether the nsc conforms to a set of AHTs [MinH, MaxH]. That is, 
∀ nsc ∈  NSC, if botmh ≥ MinH ∧ toph ≤ MaxH, then 
nsc.Belonged(AHTs) = true; otherwise, nsc.Belonged(AHTs) = 
false. 

The final operator of a nsc named Contained() is used to check 
whether the nsc is topologically contained in any another nsc. 
∀ nsck, nsct ∈ NSC, ,k t≠  if nsct contains nsck, then 
nsck.Contained(nsct) = true; otherwise,  nsck.Contained(nsct) = 
false. 

3.2 Spaces Derivation of INSM  
It’s relatively easy to conduct the conversion of basic space types. 
For instance, the class “Room” in CityGML building model can 
be regarded as the class NSC in the INSM model. For simplicity, 
currently we suppose that several basic spaces (OPN, OBS, NSC, 
VU, HU) could be derived from external sources. Then we 
provide the method to obtain other spaces of the INSM. The 
detailed process is presented as follows. 

End Detection:∀  nsc∈NSC, all of its related opn1,..opnt∈OPN, 
t ≥ 1, if nsc.LinkedSpace(opn1) =… = nsc.LinkedSpace (opnt), 
then the nsc is an end;  

Con Detection:∀  nsc∈NSC,∃related opni, opnj∈OPN, i ≠ j, if 
nsc.LinkedSpace(opni) ≠ nsc.LinkedSpace(opnj), and at least 
nsc.PassRight(opni) = in,  nsc.PassRight(opnj) = out, then the nsc 
is a con. Specifically, it’s the con to nsc.LinkedSpace(opnj). Here 
it’s called directed connector. While if nsc.PassRight(opni) = bi-

Figure 3. UML class diagram of INSM 
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direction ∧  nsc.PassRight(opnj) = bi-direction, then it’s called 
undirected connector. 

VC Detection: ∀ hu ∈ HU, ∃ opni, opnj ∈ OPN, i ≠ j, if 
hu.LinkedSpace(opni) ∈VU ∨  hu.LinkedSpace(opnj) ∈VU, then 
the hu is a vc.   

VCVS Detection: ∀hu∈HU, ∃only opni, opnj∈OPN, i ≠ j, if 
hu.LinkedSpace(opni) ∈VU ∧  hu.LinkedSpace(opnj) ∈VU, then 
the hu is a vcvs. 

HSF Detection:∀RHT, hsf = {hsf∈HSF |∀hsfi, hsfk ∈  hsf, k 
≠ i : |botmhi - botmhk|<RHT ∧ |tophi - tophk|< RHT}. It’s clear 
that RHT controls the number of nsc in a hsf. 

CVU Detection:∀hsf∈HSF, cvu = {cvu∈CVU |∀cvut ∈ cvu, ∃
hsfj ∈ hsf, cvut.Contained(hsfj) = true}. It is obvious that an 
instance of CVU depends on a given hsf. 

DHU Detection: ∀hsf∈HSF, dhu = {dhu∈DHU |∀dhut ∈dhu, 
∃opnk, opnt ∈  OPN, k ≠ t : dhut.LinkedSpace(opnk) ∈  VC ∧  
dhut.LinkedSpace(opnt) ∈ hsf}. An instance of DHU also relies on 
a given hsf. 

HSVC Detection: ∀ hsf ∈ HSF, ∃ dhu ∈ DHU, hsvc = 
{hsvc ∈ HSVC | ∀ hsvct ∈ hsvc, ∃ opn ∈ OPN : 
hsvct.LinkedSpace(opn) ∈ hsf  dhu}. An instance of HSVC 
depends on a given hsf and its related dhu. 

HS Detection: ∀ RHT, ∃  hsf ∈ HSF ∧ cvu ∈ CVU ∧ dhu 
∈DHU ∧ hsvc∈HSVC, hs = {hs∈HS |∀hst ∈hs : hst ∈ hsf  
cvu  dhu  hsvc}. 

HC Detection: ∀ hs ∈ HS, ∃ AHTs, ∀ hu ∈ HU, ∃  opni, 
opnj ∈ OPN, i ≠ j, if hu.LinkedSpace(opni) ∈ HU ∧  
hu.LinkedSpace(opnj) ∈ HU ∧  hu.Belonged(AHTs) = true, then 
the hu is a hc.  

VS Detection: VS = {vcvs1  vcvs2  …  vcvsm, 
vcvs1,vcvs2,..,vcvsm ∈ VCVS, m ≥ 0}  {vu1  vu2  …  vun, 
vu1,vu2,..,vun∈VU, n ≥ 1}. 

BS Detection: BS = {vs1  vs2  …  vsm, vs1, vs2,..,vsm ∈ VS, 
m ≥ 0} {hs1  hs2…  hsn, hs1,hs2,.., hsn ∈HS, n ≥ 1}.      

BP Detection: BP = {bs1  bs2  …  bsm, bs1, bs2,.. bsm,∈ BS, 
m ≥ 1}  {opn1   opn2  …   opnn, opn1, opn2,..opnn∈OPN, n 
≥ 1}  {obs1   obs2  …   obsk, obs1, obs2,.. obsk∈OBS, k ≥  
0}. 

B Detection:  B = {bp1  bp2  …  bpn, bp1, bp2,.. bpn ∈ BP, 
n ≥ 1}. 

So far the detection process is provided for the pivotal spaces 
defined in section 2.2. It lays a foundation to categorize building 
spaces for path-finding from certain building datasets. 

All the semantics provided by the INSM is sufficient for indoor 
path-finding. The path-finding should be conducted in a prompt 
and reasonable way. In section 4, we will explain how the INSM 
model would be utilized to support indoor path-finding.  

4. Path-finding with INSM 
Based on the INSM and certain building data indoor path-finding 
can be realized. In this paper, we stick to Logical-Graph-based 
approach. With the INSM and the two-level routing strategy in 
[12], there is no extra subdivision on the rough (first) level (i.e.  
connectivity graph). Semantic and topological information of the 
building is utilized to build the connectivity graph at the rough 
level. After some rules and certain algorithm are applied to the 
connectivity graph, a space sequence indicating which nsc to be 
orderly passed will be obtained. We name the sequence as space 
sequence or nsc sequence. According to the semantics of distinct 
spaces, some patterns of the space sequence could be elicited. For 
instance, if the start and the destination are in a same storey (i.e. 
horizontal movement), a probable space sequence is End -- HC -- 
End. While a movement will occur between different stories, a 
probable sequence is End – HC -- VC -- VU -- VC -- HC -- End. It 
implies VC and VU would be concerned only in vertical 
movements.  

The geometry of three kinds of space (NSC, OPN and OBS) will 
be concerned in the detailed (second) level. With some path-
finding algorithm the final path can be computed. This path will 
be a geometric and obstacle-avoiding path.  

The building spaces which are used for graph-construction (Nodes 
and Edges) are shown in Figure 3. Instances of NSC denote nodes 
and those of OPN represent edges. We can utilize only “valuable” 
nsc for the derivation of Logical Graph. For example, we can 
generate the graph without nodes of End. In this case, a nsc’s 
attribute OpeningIDs is checked to find the opn attached to it (see 
Figure 3). For each related opn, its attributes LeftSpaceID and 
RightSpaceID will be used to obtain the other related nsc. With 
the attribute Passingdirections of the opn, the edge’s direction 
would be determined. For a nsc with more than one opn to 
another nsc, there is just one edge linking the two nodes of nsc. In 
this way, finally a directed connectivity graph will be built.  

After the connectivity graph is acquired, some criteria are 
incorporated to provide weights on the edges of the graph, such as: 

 Obstruction degree of nsc, including obstacle density and 
crowdness;  

 The number of openings attached to nsc. We give priority to 
the nsc with more openings.  

At this step metric information is not introduced to the weights on 
the edges of the graph. Afterwards, a certain type of algorithm (e.g. 
the shortest path) will be run on this graph. The computation 
result is a rough route represented by a nsc sequence.   

When a nsc sequence is determined, a detailed route can be 
computed in each nsc by means of the door-to-door approach [12]. 
A graph is constructed on the basis of the geometric vertices of 
obs and nsc. The vertices of obs in the nsc and the concave 
vertices of the nsc compose the nodes of the graph. The 
visibilities between these nodes yield the edges of the graph. For 
each nsc, at first we need to check its attribute named 
“ContainedObstacleIDs” (see Figure 3) to get all obstacles in it. 
Finally, the shortest path algorithm is applied on the graph to get a 
geometric route in the nsc. Therefore, the geometric path is both 
the shortest and obstacle-avoiding. Until path-finding in every nsc 
on the sequence is finished, the entire geometric path is gained. 
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5. Initial Test 
In this section we will demonstrate the usage of the INSM for 
indoor path-finding on a simple three-level building. A simple 
data model is implemented in a DBMS (Oracle 11g) according to 
the INSM. The spatial schema contains three tables named 
“SpaceCell”, “Opening” and “Obstacle”. They respectively 
correspond to NSC, OPN and OBS of the INSM. The building 
data are populated in the DBMS as well. At present, we only 
consider 2D floor plans as the geometry of building objects. 

5.1 Space Sequence 
A connectivity graph can be automatically built based on the 
implementation of the data model and then path-finding will be 
conducted on it. In Figure 4, a connectivity graph is built with all 
nsc. The nodes with tag “2” represent End. Tag “0”, “1” and “3” 
denote HC, VC and VU separately. The central part of Figure 4 is 
mainly about vu and vc and the three centrifugal clusters roughly 
indicate the three hs.  

Figure 5 is the improved version of Figure 4. In Figure 5, there 
are merely two nodes with tag “2” (i.e. end). They represent start 
and destination spaces. Yet the other nodes are not ends. In this 
way the nodes of End are reduced and the routing is just 
conducted on main trunks of the connectivity graph. 

The dark line in Figure 6 denotes a nsc sequence. The number 
labeled on each node is its ID. To each nsc on the sequence, their 
corresponding geometries would be retrieved to generate a 
geometric path. In the next section, an example will be given. 

 
 

 

 
 

 
 

5.2 Detailed Path 
According to the nsc sequence in section 5.1, we compute 
geometric paths for all the nsc and we gather them to one detailed 
path. Figure 7 shows the path on the floor plans of the three-level 
building. It simulated a user started from the top floor, transferred 
by the elevator and arrived at the destination on the ground floor. 
Figure 8 demonstrates the geometric paths on the two floors in top 
view. The left image represents the top floor and the right one 
denotes the ground floor. The path on the ground floor shows 
obstacle-avoidance. 

Test results in section 5 manifest the Logical Graph can be 
automatically derived from the INSM and the two-level routing 
strategy can be applied to getting detailed paths in a building.  

 
 

   
 

6. Conclusion 
In this paper, we present a novel data model named Indoor 
Navigation Space Model to automate the derivation of the 
connectivity graph of buildings. We also provide a formalized 
method to transform the building data of other sources. Results 
from an initial test prove the usage of INSM for supporting indoor 
path-finding. 

 

Figure 4. Logical Graph built with all Navigable Space cells 
  

Figure 5. Logical Graph built without End nodes  

Figure 6. Path from the start to the destination  

Figure 7. An entire detailed path on a pile of floor plans 

Figure 8. Detailed paths on distinct stories in top view 
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Our work is an extension of the concepts presented in MLSEM 
framework. The INSM provides further semantics specializations 
of building spaces in support of navigation. We believe the INSM 
lays a foundation for a generic way to represent the indoor 
environment. A building with complex interior could be 
decomposed for navigation according to the INSM while extra 
subdivision will not be introduced. In addition, the INSM model 
can support path-finding on both the Logical Graph and the 
Geometric Network.  
INSM is designed to support the first level of path-finding 
according to the two-level routing strategy. It is quick and 
relatively simple to derive the connectivity graph (Logical Graph) 
from the INSM semantics. Currently only two criteria (obstruction 
degree and the number of openings) are used for the computation 
of space sequence. More criteria will be investigated in the future. 
The routing on the second level is based on the Geometric 
Network which is built in each nsc of the space sequence. Further 
research will address the options of employing the INSM model 
for the two-level routing. Routing results will be compared to 
those derived by other routing ways. 
Though some specific navigation tasks can be conducted with 
specialized semantics of indoor spaces (such as searching VC and 
VU for vertical movements), the INSM lacks reasoning 
capabilities presently. So we may need to further extend the 
INSM to the task ontology for indoor navigation. 
At present, the INSM is not validated yet by elaborated tests. In 
the next stage, we will validate the model with some real building 
data. Also, we need to consider the data conversion process 
according to the presented formalization. Special attention will be 
given on CityGML and IFC models. 
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