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ABSTRACT

In this paper, we propose an indoor data model named Indoor
Navigation Space Model (INSM). It is designed to support
automatic derivation of the connectivity graph of a building. The
INSM model provides an extended categorization of indoor
spaces based on building semantics. It can be used to specify the
nodes and edges of the connectivity graph. A UML class diagram
of the INSM and a general approach of external data conversion
are provided as well. An initial test of indoor path-finding is
conducted and it demonstrates the feasibility of the INSM model
to support indoor routing.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data models;

H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms, Design

Keywords
Indoor Navigation, Building Semantics, Indoor Navigation Space
Model, Path-finding.

1. INTRODUCTION

Indoor navigation is a task which consists of indoor localization,
route planning and homing users on the designed routes. All the
three stages need an appropriate representation of the indoor
environments. Thus some sort of building model has to be
constructed to facilitate indoor navigation. Generally, 3D
topographic space is a fundamental aspect for indoor navigation.
More specifically, the subspaces obtained from the whole building
space with given semantics are significant to route planning.

The CityGML model and the Industry Foundation Classes (IFC)
provide the topographic space of the indoor environment. They
present geometric and topological relationships and certain
semantics of the indoor environment. So they can potentially
provide a part of or all of the necessary information for indoor
navigation. Nevertheless, they are not specific models for indoor
navigation. Some important information may not be explicitly and
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automatically obtained from them, such as the connectivity
between staircases and other spaces. Yet this information is
essential to indoor route planning, especially for graph-based
approaches.

Furthermore, usually indoor obstacles can disturb the navigation
process. However, state of the art researches and implementations
of the indoor navigation (or the indoor path-finding) don’t stress
out the obstacle issue except for some simple emergency scenarios
[9, 16]. For instance, in the CityGML building model a class
named IntBuildinglnstallation represents *“an object inside a
building with a specialized function or semantic meaning” [6].
Thus it can be regarded as a potential fixed obstacle, which means
it can’t be moved when pedestrians attempt to get through the
space which it occupies. Another class BuildingFurniture can be
considered as the potential moveable obstacles, such as chairs
which can be budged. Nonetheless, there is no class to denote
obstacles generated by hazards during emergencies.

Recently several navigation models have been investigated and
reported in literature. The semantic model proposed in [14]
mostly focuses on the Granting property of openings. It is not
good enough for path derivation as it lacks the connectivity
information between indoor spaces. The Combinatorial Data
Model (CDM) is proposed in [10] to represent adjacency,
connectivity and hierarchical relationships of building entities. It's
a logical model and its representation is a pure graph without
geometric properties. In order to apply network-based analyses
(e.g. path-finding) on this model, the geometrical metric is
introduced by means of Medial Axis Transformation (MAT) [1].
Finally, a geometric network is used to represent the building and
support analyses. Another semantic model provided in [17] is also
based on the geometric network of a building. But obstacles are
not taken into account in the model. Recently a new semantic
modelling method is reported in [18]. Yet it only aims at 2D
geometries of buildings and the building semantics is quite simple.
A "structured floor plan” is presented in [3]. It aims at supporting
spatial design by getting semantic building spaces from the
building geometry. It is also not a specific navigation model. For
instance, the “beam” class is unnecessary to be used for path-
finding.

The Indicative Route Method (IRM) is proposed in [8] on the
basis of the "corridor map"[5]. The notion of "corridor" delineates
the space that people can move freely among obstructions. The
method inherently supports obstacle avoidance. Meanwhile,
skeletons (the medial axes) or curves with certain clearance to the
obstacles are smoothed. However, it is only a path-finding method
and it doesn't involve the management of obstacles. If the free
spaces are known to users, it implies the test scenario also has
been known. So before applying this method to different kinds of
scenarios, a model for scenarios is required.



The approach in [7] aims to construct the geometric-topological
consistent indoor environment by making use of a grammar.
Meanwhile, semantic information can be obtained as well.
Though it’s a promising way, much more rules have to be added
in to reconstruct complex buildings.

A clear and very interesting model is proposed in [2]. Although
the conceptual model grasps all key elements of buildings such as
IndoorObstacleSpace, TransitionSpace and IndoorSpace, it’s still
a bit rough and it does not elaborate on the relations between the
three key classes. Also, the means by which these elements group
into the elements of higher level (e.g. storey and
IndoorEnvironment) is vague.

The Multilayered Space-Event Model (MLSEM) [15] has been
developed recently. It provides a fundamental framework for
indoor navigation and allows links to be established between

different layers such as building geometry, coverage of sensors etc.

The research in this paper follows the general concepts of the
MLSEM.

Based on the review given above, disadvantages of current
navigation models can be summarized as follows:

® Limited link between indoor space subdivision strategies
and path-finding approaches.

Incomplete concerns about semantics of building spaces.

Limited consideration of indoor navigation with obstacles.
The routing algorithms mostly consider empty spaces. Yet
in emergencies, obstacles are significant as they may change
a path and impact the safety of pedestrian’s movement.

®  Little consideration of dynamically changing scenarios such
as the emergency scenario.

In this paper, we propose a spatial-semantic coherent data model.
It aims to address the above mentioned deficiencies. The model is
specifically designed to support different environments/scenarios
for specific indoor navigation tasks. It allows the connectivity to
be automatically derived from the semantic hierarchy. Moreover,
when applying classification/semantics of the model to indoor
path-finding, we concentrate upon some “useful” building spaces
and their characteristics.

The paper is developed as follows. In section 2, we will present
our model and provide the definitions of indoor spaces. Section 3
will elaborate a general method to convert external data to the
data in our model. Section 4 would address how our model is
applied to indoor path-finding. Afterwards, section 5 will
exemplify an initial test to demonstrate the feasibility of our
approach. Ultimately, section 6 will conclude this paper with
some future work.

2. Indoor Navigation Space Model

Generally, the purpose of space subdivision for indoor navigation
is to automate the derivation of graphs of certain type [11, 14, 15].
But most of these graphs belong to the Geometric Network, i.e.
metric information (e.g. coordinates) is assigned to each node of
the graphs. Since the primary path-finding method is based on a
graph representing building interior [4, 13], geometric routes can
be calculated according to some rules and algorithms (e.g. the
shortest way or the fastest way).

In this paper we consider the so called Logical Graph which
doesn’t involve metrics. Moreover, for indoor navigation we

consider the two-level routing strategy which is presented in the
previous publication [12]. The first level (i.e. the rough level) is
based on an appropriate subdivision of a building. The Logical
Graph (i.e. connectivity graph) is obtained on this level. On the
basis of the Logical Graph the sequence of spaces to be followed
is defined. At the second level the Door-to-door algorithm is
applied. It utilizes metrics and considers obstacles to get a
detailed path. Visibility graph (VG) is the foundation of the
algorithm. A VG is constructed with the geometry of the current
space and those of the obstacles contained in the space. Nodes of
the VG involve the geometric vertices of obstacles and the
concave vertices of the space; while edges represent the visibility
between those nodes. After some shortest algorithm is applied to
the VG, we can gain a shortest-distance and obstacle-avoided path.
Yet in this paper, we further concentrate on the model of space
subdivision. It’s devised to bridge common-used standard datasets
(IFC, CityGML and floor plans etc.) and indoor navigation.

2.1 Design Consideration

When we design a space model it is important to clarify the
navigation spaces and their semantics. Also, the connectivity
between these spaces should be readily identified. The principle is
to effectively characterize indoor navigable spaces and keep the
number of space types as less as possible. Thus we need to rethink
about indoor spaces.

During the development of a novel model for buildings, we offer
explicit indications of spaces. For a space these indications
include its navigation usage, its connections to other spaces (i.e.
multiplicity of connections), the possibilities to change floors and
the free area within it. According to the usage of spaces, some
spaces may be filtered and only the “useful” spaces will be
collected for navigation. In the horizontal movement of users,
certain transition spaces (e.g. openings) would be helpful as they
connect different parts and control the accessibility of a building.
In order to consider the vertical movement such like changing
floors, we would like to extract some specific spaces to stairs and
other vertical movement facilities (i.e. elevators).

For a space (a room or a corridor), it is important to know how
many obstacles are in it. This can be an indication of the available
free part for navigation. Furthermore, openings in a single space
imply its connections with other spaces. The multiplicity of the
connections may change the direction of movement.

According to various data of the indoor environment, for path
computation we require a model which can identify a set of spaces
and a set of relationships among the spaces from building
semantics. The spaces are regarded as nodes and the relationships
are considered edges. Then the graph derivation could be
achieved automatically yet metrics (i.e. geometric information) are
not introduced. The space sequence can be computed on this
graph by applying non-metrics rules.

In the following section we will introduce the data model named
Indoor Navigation Space Model (INSM). All the involved spaces
(different building elements) are given with their formal
definitions and relations. In addition, a UML class diagram of the
model and a general external-data-conversion method will be
discussed in detail.

2.2 Building Space Definitions
We use the notations of set theory to introduce our definitions.
The introduced spaces and their relationships are also going to be



modelled with UML. We use capital letters to denote all sets and
we take corresponding small letters to denote the set elements.

At first, we present three general indoor spaces. They are Obstacle,
Opening and Navigable Space cell. Their definitions are given as
follows.

1) Obstacle (OBS) is a space which cannot be entered by
pedestrians.

2) Opening (OPN) is a transition space for the movement from
one space to another space.

3) Navigable Space cell (NSC) is a space in which people can
move freely without passing any opn.

==

Opening

Opening Opening
/

Figure 1. Ilustration of general space notions

As shown in Figure 1, a nsc could contain one or more obs; and a
nsc can contain one or more other nsc as well. A opn can only
connect two nsc.

Some other basic building spaces are defined as follows:

4) Vertical Unit (VU) is a nsc in which people can move in
vertical directions (up and down) along the same slope.

5) Horizontal Unit (HU) is a nsc in which people can move freely
in horizontal directions.

6) End is a hu which is only connected to one another nsc at most.

Above five types (OPN, OBS, NSC, VU, HU) are the basic spaces
in a building. Several other spaces will be defined with the help of
them.

Here we introduce a useful auxiliary space type -- Connector.
According to [14], the Connector represents corridors, elevators
and stairs. A Connector has more than one entrance/exit [14]. In
this paper we change its definition as an End also could have
more than one entrance/exit. We define the Connector based on
the number of its linked neighboring spaces. If a nsc is connected
to at least two spaces nsc,,nsc, € NSC,k #t, then the nsc is a

Connector (CON).

A nsc’s absolute bottom height is denoted by botmh, and its
absolute top height is represented by toph. They are named the
nsc’s heights (botmh, toph) for short.

For a group of nsc, the maximum value of their toph is MaxH and
the minimum value of their botmh is MinH. (MinH, MaxH) is a set
of Absolute Height Thresholds (AHTS).

vnsc,,nsc, € NSC,k =t, 3r e R, 0 <r <|toph, - botmh,| A 1 <
|toph; - botmhy|, if botmh, - botmh,| <r A [tophy - toph{ <, then
r is the Relative Height Threshold (RHT). In practice, the RHT is
a given tolerance (e.g. 0.3 m).

Vertical Connector (VC) is a hu which connects at least two
different nsc, meanwhile at least one of these nsc is a vu. That is,
VC :={vc € VC| V vc, 3 connected nscy, nsc; € NSC, k =#t: vc
e HU A nscye VU v nsc; € VU}. We name it VC as it’s a con
and it connects at least one vu.

Horizontal Space Floor (HSF) is a group of hu. HSF := {hsf e
HSF | Vhsf : hsf € HU A MinH < botmh <MaxH A MinH <
toph <MaxH}.

Contained Vertical Unit (CVU) is a group of vu contained in
certain hsf. CVU := {cvue CVU | V cvu, 3 hsfe HSF : cvue VU
A CVU is in hsf}.

Dangling Horizontal Unit (DHU) is a group of hu which connects
HSF to some vc but doesn’t belong to HSF. DHU := {dhu € DHU
| ¥ dhu, 3 connected nscy, nsc, € NSC, k #t: dhue HU A dhu

¢ HSF A nsc, e VC A nsc; € HSF}.

Horizontal Space Vertical Connector (HSVC) := {hsvc € HSVC |
V hsve, 3 connected nsc e NSC : hsvc e VC A nsc e
HSF U DHU}.

Horizontal Space (HS, storey) := {hs e HS | V hs; e hs :
hs; e HSF U CVU U DHU U HSVC}. HS is devised to represent
the notion of “storey/floor” in reality. Originally it is the gathering
of hu at certain height level. But in order to model the complex
“storey” which contains intermediate-levels and some unequal-
height spaces, we have adopted the above definition. Generally, a
hs is the gathering of a group of nsc. The height level of a hs is
controlled by a set of AHTs (MinH, MaxH).

Horizontal Connector (HC) is a hu which connects at least two
other different hu, meanwhile all of them belong to a same storey.
HC := {hc € HC | ¥ hc, 3 connected huy, hu, € HU, k #t:
hce HU A hc, hug and hu, are in one hs}.

Vertical Connector in Vertical Space (VCVS) is a hu which only
connects two different vu. Thus a vcvs is also a vc. VCVS :=
{vevs € VCVS | V vevs, 3 only connected nscy, nsc; € NSC,
k#t: vevse HU A nsc, € VU A nsc, € VU}

Vertical Space (VS) generally is the aggregation of a group of vu
and vevs. VS 1= {vse VS| Vvs; € vs: vs; € VU J VCVS}.

Building Space (BS) is the gathering of multiple vs and hs without
OBS. BS := {bse BS | V¥bs; € bs: bs;e VS HS}.

Building Part (BP) is the aggregation of multiple bs, opn and obs.
BP :={bpe BP | Vbp; € bp: bp;e BSUOPNU OBS}.

Building (B) is the aggregation of multiple bp. B :={b€B| Vb :
b < BP}.

From above definitions, several conclusions could be gained as
follows. A vu connects at least two vc; a vc connects at least one
vu; a hc connects at least two hu; and a vcvs connects only two vu.

Figure 2 illustrates some key building spaces of the INSM. They
are VC, VU, HC, HS and End. In Figure 2, there is a vu contained



in a hu. Thus it’s a cvu. And several hu on the ground constitute a
hsf. On the left side of Figure 2, the top height of a connected vc
exceeds those of the hu. According to the definition of HS, the vc,
those hu and the cvu compose a hs (storey). In this case, it
demonstrates the capacity to describe and construct complex
indoor environments (e.g. intermediate-levels in a storey and
indoor spaces with distinct heights). Though a few models has
already been proposed for indoor navigation [10, 14, 17, 18, 19],
we believe the INSM is more capable of expressing most
buildings without extra subdivision.

The next section will present a UML class diagram of key
building spaces which are defined in this section. Yet some
supportive spaces such as CON, HSF, CVU, DHU and HSVC are
not critical for navigation tasks. Thus they are not selected into
the UML diagram.

2.3 UML Class Diagram

We name the data model as Indoor Navigation Space Model
(INSM). The INSM model contains the basic spaces OPN, OBS,
NSC, VU, HU, the specializations End, VC, VCVS, HC, and the
aggregations HS, VS, BS, BP, B.

A fundamental class is NSC. It denotes all navigable units of a
building. Thus it’s the generalization of several other space
classes. HU and VU are two basic subclasses of NSC. HC is the
main horizontal passage between any two hu in a hs (storey). VC
connects hu / vu to vu, and vice versa. VC has a subclass VCVS.
VU is the generalization of Staircase, Escalator, Elevator, Ramp
and VerticalTransferCells (e.g. a spacious nsc spanning two hs).
End is a kind of HU. In general, HC, VC and VU are like vessels
in a building. So path computation will stick to these main
passages.

There are several other important classes in the diagram such like
OPN and OBS. Except for Door and Window, a subclass of OPN
named TemporaryOpening is designed to represent emergency
exits. Also, the classes called FacadeWindow and InteriorWindow,
the subclasses of Window, are distinguished according to their
usages. For example, an instance of FacadeWindow at low-level
hs(storey) can be used for evacuation when a scaling ladder is set
to it.

The subclasses named FixedObstacle and MoveableObstacle are
designed for the class OBS. Their instances (e.g. pillars and desks)
can be found in normal situation. Yet another subclass called
DynamicObstacle is devised to express some obstructions
occurring along with building changes such as hazards or
collapsing parts.

Furthermore, the class VS is aggregated by the classes VU and
VCVS. Another aggregation class HS is contributed by HU and
VU. VS and HS further aggregate to the class BS. Then BS, OPN
and OBS are gathered to form the class BP. Finally, the class B is
aggregated by BP.

Next we would elaborate the attributes of distinct classes in the
UML diagram. The class NSC includes attributes as TopHeight
and BottomHeight referring to a nsc’s heights. It also has other
pivotal attributes  which are  called OpeninglDs,
ContainedObstaclelDs, HazardPresence, ObstacleDensity and
Crowdness. The attribute OpeningIDs indicates which opn are
related to a nsc. It will be used to support connectivity graph
derivation of a building. The attributes ObstacleDensity and
Crowdness denote the degree of obstruction and congestion in a
nsc. They are used to compute the weights of edges on a graph for
path-finding. Moreover, the attribute ContainedObstaclelDs is
designed to imply which obstacles are contained in a nsc. The
attribute HazardPresence indicates the current state of a nsc.

Both the classes VU and VS provide the attributes named
LinkTopStoreylD and LinkBottomStoreyID to show their relations
with different hs. In the class HS, the attributes MaxHeight and
MinHeight represent the AHTs of related hs (storey). The
information that a hu is contained in certain hs also should be
stored. Thus the class HU is designed an attribute named StoreyID.
As an end is connected to one nsc at most, so there is an attribute
of the class End named NeighborID which indicates the
connected nsc.

For the class OPN, the attribute Existence denotes whether a opn
is existed; the attributes called LeftSpacelD and RightSpacelD
provide the IDs of two connected nsc; PassingDirections reflects
whether a opn is passable from a nsc to another one; The attribute
called IsExit indicates whether a opn is a main entrance/exit of a
building; Another attribute CurrentState reveals that a opn is
opened or close. At last, in the class OBS, one of its attributes
named BelongedSpacelD implies which nsc contains the obs.

So far we have presented the UML class diagram of building
spaces according to the definitions in section 2.2. From
conceptual viewpoint the UML diagram is in line with those
definitions. But the UML diagram provides the better view on
classes and relationships. Moreover, according to the UML
diagram the INSM model can be directly prepared for
implementation.

It’s not enough to merely use the INSM for indoor navigation as
available indoor data may be acquired from some other data
model. Thus it’s necessary to consider data conversion from other
sources to the INSM. With the classes and their attributes of the
INSM, the data conversion can be completed. In the next section,
we will introduce the process.

3. Data Conversion to INSM

Sometimes there may be no obvious sign of certain space type in
the INSM. For instance, a vu in Figure 2 is a staircase connected
to a vc. There is a connection but no a genuine door between them.
This gives us a hint that in reality we are not always lucky to have
a complete dataset which totally conforms to the INSM model. So
it requires an efficient and accurate way to convert the data from
some other sources (e.g. CityGML or IFC models) and to import
them to our INSM model.
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Figure 3. UML class diagram of INSM

In the following subsections, at first we introduce several specific
operators of class NSC. Then we explain how these operators and
semantics of the INSM are used to transform the data of external
sources.

3.1 Operators

An operator named PassRight() of a nsc is defined to check the
passing right of a opn of the nsc. Its input parameter is a opn. The
return values are {in, out, bi-direction, none}. “infout” means it’s
able to be in/out of a nsc, and “bi-direction” indicates one could
get both in and out of a nsc. At last, “none’ indicates a nsc can not
be accessed by this opn.

As a opn connects two nsc, an operator of a nsc named
LinkedSpace() is used to acquire the other nsc linked by the opn.
Its input parameter is a opn and the return value is the connected
nsc. That is, opn connects nsc, hsc; € NSC, k=t,

nscy .LinkedSpace(opn) = nsc..

Another operator named Belonged() of a nsc is used to check
whether the nsc conforms to a set of AHTs [MinH, MaxH]. That is,
¥ nsc € NSC, if botmh = MinH A toph < MaxH, then
nsc.Belonged(AHTs) = true; otherwise, nsc.Belonged(AHTs) =
false.

The final operator of a nsc named Contained() is used to check
whether the nsc is topologically contained in any another nsc.

V nsc, nsc; € NSC, k=t, if nsc, contains nsc, then
nsc.Contained(nsc;) = true; otherwise, nscy.Contained(nsc;) =
false.

3.2 Spaces Derivation of INSM

It’s relatively easy to conduct the conversion of basic space types.
For instance, the class “Room” in CityGML building model can
be regarded as the class NSC in the INSM model. For simplicity,
currently we suppose that several basic spaces (OPN, OBS, NSC,
VU, HU) could be derived from external sources. Then we
provide the method to obtain other spaces of the INSM. The
detailed process is presented as follows.

End Detection: V nsc e NSC, all of its related opny,..opn,€ OPN,
t> 1, if nsc.LinkedSpace(opn;) =... = nsc.LinkedSpace (opn,),
then the nsc is an end;

Con Detection: V' nsc e NSC, Jrelated opn;, opn;e OPN, i#j, if
nsc.LinkedSpace(opn;) # nsc.LinkedSpace(opn;), and at least
nsc.PassRight(opn;) = in, nsc.PassRight(opn;) = out, then the nsc
is a con. Specifically, it’s the con to nsc.LinkedSpace(opn;). Here
it’s called directed connector. While if nsc.PassRight(opn;) = bi-



direction A nsc.PassRight(opn;) = bi-direction, then it’s called
undirected connector.

VC Detection: V hu € HU,  opn;, opn; € OPN, i = j, if
hu.LinkedSpace(opn;) € VU v hu.LinkedSpace(opn;) € VU, then
the hu is a vc.

VCVS Detection: Vhue HU, Jonly opn;, opnje OPN, i#]j, if
hu.LinkedSpace(opn;) € VU A hu.LinkedSpace(opn;) € VU, then
the hu is a vevs.

HSF Detection: V RHT, hsf = {hsfe HSF |V hsf;, hsfy € hsf, k
#1i : |botmh; - botmh,|<RHT A [toph; - toph,|< RHT}. It’s clear
that RHT controls the number of nsc in a hsf.

CVU Detection: V hsf € HSF, cvu = {cvu € CVU |V cvu; € cvu,
hsf; e hsf, cvu.Contained(hsf;) = true}. It is obvious that an
instance of CVU depends on a given hsf.

DHU Detection: V hsfe HSF, dhu = {dhu e DHU |V dhu; € dhu,
3 opng, opn; e OPN, k=t : dhu.LinkedSpace(opny) € VC A
dhuy.LinkedSpace(opn;) € hsf}. An instance of DHU also relies on
a given hsf.

HSVC Detection: V hsf € HSF, 3 dhu € DHU, hsvc =
{hsvc € HSVC | V hsvwe, € hsve, 4 opn e OPN
hsvc..LinkedSpace(opn) e hsf U dhu}. An instance of HSVC
depends on a given hsf and its related dhu.

HS Detection: V RHT, 3 hsf € HSF A cvu € CVU A dhu
€ DHU A hsvc e HSVC, hs = {hse HS |V hs; € hs : hs; € hsfU

cvulJ dhu U hsvc}.

HC Detection: V hs € HS, 3 AHTs, V hu € HU, 3 opn;
opn; € OPN, i # j, if hu.linkedSpace(opn) € HU A~
hu.LinkedSpace(opn;)) € HU A hu.Belonged(AHTSs) = true, then
the hu is a hc.

VS Detection: VS = {vevs; | vevs, U vevsn,

VCVS1,VCVS,,..,VCVSy € VCVS, m > 0} U {vuy Y vua {J ... J Vun,
VUy,VUy,..,VU, € VU, n >1}.

BS Detection: BS = {vs; |JVs;|J ... J VSm: V51, VSp,..,VSp € VS,
m>0}U{hs;J hsaUJ ... U hsn, hsy,hs,,.., hs, € HS, n > 1}.

BP Detection: BP = {bs; |Jbs,J ... |J bSm, bS1, bSy,.. bsy, € BS,
m>1} U {opn; | J opnaJ ... |J 0PN, OpNy, 0pN,,..0pn, € OPN, n
> 1} U {obs;|J obs, (... |J obsy, obs;, obs,,.. obs,e OBS, k >
0}.

B Detection: B = {bpy(Jbp2J ... U bpn, bp1, bpy,.. bp, € BP,
n>1}.

So far the detection process is provided for the pivotal spaces
defined in section 2.2. It lays a foundation to categorize building
spaces for path-finding from certain building datasets.

All the semantics provided by the INSM is sufficient for indoor
path-finding. The path-finding should be conducted in a prompt
and reasonable way. In section 4, we will explain how the INSM
model would be utilized to support indoor path-finding.

4. Path-finding with INSM

Based on the INSM and certain building data indoor path-finding
can be realized. In this paper, we stick to Logical-Graph-based
approach. With the INSM and the two-level routing strategy in
[12], there is no extra subdivision on the rough (first) level (i.e.
connectivity graph). Semantic and topological information of the
building is utilized to build the connectivity graph at the rough
level. After some rules and certain algorithm are applied to the
connectivity graph, a space sequence indicating which nsc to be
orderly passed will be obtained. We name the sequence as space
sequence or nsc sequence. According to the semantics of distinct
spaces, some patterns of the space sequence could be elicited. For
instance, if the start and the destination are in a same storey (i.e.
horizontal movement), a probable space sequence is End -- HC --
End. While a movement will occur between different stories, a
probable sequence is End — HC -- VC -- VU -- VC -- HC -- End. It
implies VC and VU would be concerned only in vertical
movements.

The geometry of three kinds of space (NSC, OPN and OBS) will
be concerned in the detailed (second) level. With some path-
finding algorithm the final path can be computed. This path will
be a geometric and obstacle-avoiding path.

The building spaces which are used for graph-construction (Nodes
and Edges) are shown in Figure 3. Instances of NSC denote nodes
and those of OPN represent edges. We can utilize only “valuable”
nsc for the derivation of Logical Graph. For example, we can
generate the graph without nodes of End. In this case, a nsc’s
attribute OpeninglIDs is checked to find the opn attached to it (see
Figure 3). For each related opn, its attributes LeftSpacelD and
RightSpacelD will be used to obtain the other related nsc. With
the attribute Passingdirections of the opn, the edge’s direction
would be determined. For a nsc with more than one opn to
another nsc, there is just one edge linking the two nodes of nsc. In
this way, finally a directed connectivity graph will be built.

After the connectivity graph is acquired, some criteria are
incorporated to provide weights on the edges of the graph, such as:

®  Obstruction degree of nsc, including obstacle density and
crowdness;

®  The number of openings attached to nsc. We give priority to
the nsc with more openings.

At this step metric information is not introduced to the weights on
the edges of the graph. Afterwards, a certain type of algorithm (e.g.
the shortest path) will be run on this graph. The computation
result is a rough route represented by a nsc sequence.

When a nsc sequence is determined, a detailed route can be
computed in each nsc by means of the door-to-door approach [12].
A graph is constructed on the basis of the geometric vertices of
obs and nsc. The vertices of obs in the nsc and the concave
vertices of the nsc compose the nodes of the graph. The
visibilities between these nodes yield the edges of the graph. For
each nsc, at first we need to check its attribute named
“ContainedObstaclelDs” (see Figure 3) to get all obstacles in it.
Finally, the shortest path algorithm is applied on the graph to get a
geometric route in the nsc. Therefore, the geometric path is both
the shortest and obstacle-avoiding. Until path-finding in every nsc
on the sequence is finished, the entire geometric path is gained.



5. Initial Test

In this section we will demonstrate the usage of the INSM for
indoor path-finding on a simple three-level building. A simple
data model is implemented in a DBMS (Oracle 11g) according to
the INSM. The spatial schema contains three tables named
“SpaceCell”, “Opening” and “Obstacle”. They respectively
correspond to NSC, OPN and OBS of the INSM. The building
data are populated in the DBMS as well. At present, we only
consider 2D floor plans as the geometry of building objects.

5.1 Space Sequence

A connectivity graph can be automatically built based on the
implementation of the data model and then path-finding will be
conducted on it. In Figure 4, a connectivity graph is built with all
nsc. The nodes with tag “2” represent End. Tag “0”, “1” and “3”
denote HC, VC and VU separately. The central part of Figure 4 is
mainly about vu and vc and the three centrifugal clusters roughly
indicate the three hs.

Figure 5 is the improved version of Figure 4. In Figure 5, there
are merely two nodes with tag “2” (i.e. end). They represent start
and destination spaces. Yet the other nodes are not ends. In this
way the nodes of End are reduced and the routing is just
conducted on main trunks of the connectivity graph.

The dark line in Figure 6 denotes a nsc sequence. The number
labeled on each node is its ID. To each nsc on the sequence, their
corresponding geometries would be retrieved to generate a
geometric path. In the next section, an example will be given.

Figure 4. Logical Graph built with all Navigable Space cells

Figure 5. Logical Graph built without End nodes

Figure 6. Path from the start to the destination

5.2 Detailed Path

According to the nsc sequence in section 5.1, we compute
geometric paths for all the nsc and we gather them to one detailed
path. Figure 7 shows the path on the floor plans of the three-level
building. It simulated a user started from the top floor, transferred
by the elevator and arrived at the destination on the ground floor.
Figure 8 demonstrates the geometric paths on the two floors in top
view. The left image represents the top floor and the right one
denotes the ground floor. The path on the ground floor shows
obstacle-avoidance.

Test results in section 5 manifest the Logical Graph can be
automatically derived from the INSM and the two-level routing
strategy can be applied to getting detailed paths in a building.

Figure 7. An entire detailed path on a pile of floor plans
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Figure 8. Detailed paths on distinct stories in top view

6. Conclusion

In this paper, we present a novel data model named Indoor
Navigation Space Model to automate the derivation of the
connectivity graph of buildings. We also provide a formalized
method to transform the building data of other sources. Results
from an initial test prove the usage of INSM for supporting indoor
path-finding.



Our work is an extension of the concepts presented in MLSEM
framework. The INSM provides further semantics specializations
of building spaces in support of navigation. We believe the INSM
lays a foundation for a generic way to represent the indoor
environment. A building with complex interior could be
decomposed for navigation according to the INSM while extra
subdivision will not be introduced. In addition, the INSM model
can support path-finding on both the Logical Graph and the
Geometric Network.

INSM is designed to support the first level of path-finding
according to the two-level routing strategy. It is quick and
relatively simple to derive the connectivity graph (Logical Graph)
from the INSM semantics. Currently only two criteria (obstruction
degree and the number of openings) are used for the computation
of space sequence. More criteria will be investigated in the future.
The routing on the second level is based on the Geometric
Network which is built in each nsc of the space sequence. Further
research will address the options of employing the INSM model
for the two-level routing. Routing results will be compared to
those derived by other routing ways.

Though some specific navigation tasks can be conducted with
specialized semantics of indoor spaces (such as searching VC and
VU for vertical movements), the INSM lacks reasoning
capabilities presently. So we may need to further extend the
INSM to the task ontology for indoor navigation.

At present, the INSM is not validated yet by elaborated tests. In
the next stage, we will validate the model with some real building
data. Also, we need to consider the data conversion process
according to the presented formalization. Special attention will be
given on CityGML and IFC models.
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